An upper bound on the domination number of a graph with minimum degree 2

نویسندگان

  • Allan Frendrup
  • Michael A. Henning
  • Bert Randerath
  • Preben D. Vestergaard
چکیده

A set S of vertices in a graph G is a dominating set of G if every vertex of V (G)\S is adjacent to some vertex in S. The minimum cardinality of a dominating set of G is the domination number of G, denoted as γ (G). Let Pn and Cn denote a path and a cycle, respectively, on n vertices. Let k1(F) and k2(F) denote the number of components of a graph F that are isomorphic to a graph in the family {P3, P4, P5,C5} and {P1, P2}, respectively. Let L be the set of vertices of G of degree more than 2, and let G − L be the graph obtained from G by deleting the vertices in L and all edges incident with L. McCuaig and Shepherd [W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749–762] showed that if G is a connected graph of order n ≥ 8 with δ(G) ≥ 2, then γ (G) ≤ 2n/5, while Reed [B.A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277–295] showed that if G is a graph of order n with δ(G) ≥ 3, then γ (G) ≤ 3n/8. As an application of Reed’s result, we show that if G is a graph of order n ≥ 14 with δ(G) ≥ 2, then γ (G) ≤ 3 8 n + 1 8 k1(G − L)+ 1 4 k2(G − L). c © 2008 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On trees attaining an upper bound on the total domination number

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

متن کامل

Hypo-efficient domination and hypo-unique domination

For a graph $G$ let $gamma (G)$ be its domination number. We define a graph G to be (i) a hypo-efficient domination graph (or a hypo-$mathcal{ED}$ graph) if $G$ has no efficient dominating set (EDS) but every graph formed by removing a single vertex from $G$ has at least one EDS, and (ii) a hypo-unique domination graph (a hypo-$mathcal{UD}$ graph) if $G$ has at least two minimum dominating sets...

متن کامل

Co-Roman domination in trees

Abstract: Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function‎. ‎A vertex v is protected with respect to f‎, ‎if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight‎. ‎The function f is a co-Roman dominating function‎, ‎abbreviated CRDF if‎: ‎(i) every vertex in V is protected‎, ‎and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the func...

متن کامل

New results on upper domatic number of graphs

For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...

متن کامل

The k-tuple domination number revisited

The following fundamental result for the domination number γ(G) of a graph G was proved by Alon and Spencer, Arnautov, Lovász and Payan: γ(G) ≤ ln(δ + 1) + 1 δ + 1 n, where n is the order and δ is the minimum degree of vertices of G. A similar upper bound for the double domination number was found by Harant and Henning [On double domination in graphs. Discuss. Math. Graph Theory 25 (2005) 29–34...

متن کامل

On Independent Domination Number of Graphs with given Minimum Degree

We prove a new upper bound on the independent domination number of graphs in terms of the number of vertices and the minimum degree. This bound is slightly better than that by J. Haviland 3] and settles Case = 2 of the corresponding conjecture by O. Favaron 2].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009