Towards End-to-End Audio-Sheet-Music Retrieval
نویسندگان
چکیده
This paper demonstrates the feasibility of learning to retrieve short snippets of sheet music (images) when given a short query excerpt of music (audio) – and vice versa –, without any symbolic representation of music or scores. This would be highly useful in many content-based musical retrieval scenarios. Our approach is based on Deep Canonical Correlation Analysis (DCCA) and learns correlated latent spaces allowing for cross-modality retrieval in both directions. Initial experiments with relatively simple monophonic music show promising results.
منابع مشابه
Towards Score Following In Sheet Music Images
This paper addresses the matching of short music audio snippets to the corresponding pixel location in images of sheet music. A system is presented that simultaneously learns to read notes, listens to music and matches the currently played music to its corresponding notes in the sheet. It consists of an end-to-end multi-modal convolutional neural network that takes as input images of sheet musi...
متن کاملMusic Genre Classification using Machine Learning Techniques
Categorizing music files according to their genre is a challenging task in the area of music information retrieval (MIR). In this study, we compare the performance of two classes of models. The first is a deep learning approach wherein a CNN model is trained end-to-end, to predict the genre label of an audio signal, solely using its spectrogram. The second approach utilizes hand-crafted feature...
متن کاملPrototyping a Vibrato-Aware Query-By-Humming (QBH) Music Information Retrieval System for Mobile Communication Devices: Case of Chromatic Harmonica
Background and Aim: The current research aims at prototyping query-by-humming music information retrieval systems for smart phones. Methods: This multi-method research follows simulation technique from mixed models of the operations research methodology, and the documentary research method, simultaneously. Two chromatic harmonica albums comprised the research population. To achieve the purpose ...
متن کاملTowards Deep Modeling of Music Semantics using EEG Regularizers
Modeling of music audio semantics has been previously tackled through learning of mappings from audio data to high-level tags or latent unsupervised spaces. The resulting semantic spaces are theoretically limited, either because the chosen high-level tags do not cover all of music semantics or because audio data itself is not enough to determine music semantics. In this paper, we propose a gene...
متن کاملDeep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval
Deep cross-modal learning has successfully demonstrated excellent performances in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics are taken into account. Stemming from the ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1612.05070 شماره
صفحات -
تاریخ انتشار 2016