Delzant models of moduli spaces

نویسنده

  • Andrei Tyurin
چکیده

For every genus g, we construct a smooth, complete, rational polarized algebraic variety DMg together with a normal crossing divisor D = ⋃ Di, such that for every moduli space MΣ(2, 0) of semistable topologically trivial vector bundles of rank 2 on an algebraic curve Σ of genus g there exists a holomorphic isomorphism f : MΣ(2, 0) \ K2 → DMg \ D, where K2 is the Kummer variety of the Jacobian of Σ, sending the polarization of DMg to the theta divisor of the moduli space. This isomorphism induces isomorphisms of the spaces H(MΣ(2, 0),Θ ) = H(DMg,H ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

Toric Symplectic Singular Spaces I: Isolated Singularities

We generalize a theorem of Delzant classifying compact connected symplectic manifolds with completely integrable torus actions to certain singular symplectic spaces. The assumption on singularities is that if they are not finite quotient then they are isolated.

متن کامل

Calabi-Yau Three-folds and Moduli of Abelian Surfaces II

The main goal of this paper, which is a continuation of [GP1], [GP2] and [GP3], is to describe birational models for moduli spaces Ad of polarized abelian surfaces of type (1, d) for small values of d, and for moduli spaces of such polarized abelian surfaces with suitably defined partial or canonical level structure. We can then decide the uniruledness, unirationality or rationality of nonsingu...

متن کامل

Performance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures

Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dyn...

متن کامل

Moduli Spaces of Hyperelliptic Curves with a and D Singularities

We introduce moduli spaces of quasi-admissible hyperelliptic covers with at worst A and D singularities. Stability conditions for these moduli problems depend on two parameters describing allowable singularities. At the extreme values of the parameters, we obtain the stacks TAn and TDn of stable limits of An and Dn singularities, as well as the quotients of the miniversal deformation spaces of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001