Methylprednisolone attenuates hypothermia- and rewarming-induced cytotoxicity and IL-6 release in isolated primary astrocytes, neurons and BV-2 microglia cells.
نویسندگان
چکیده
Brain protection is crucial during neonatal and pediatric cardiac surgery. The major methods for brain protection are the administration of steroids and deep hypothermia. Therefore, we have investigated the impact of methylprednisolone (MP) administration and deep hypothermia on neonatal mouse astrocytes, neurons and BV-2 microglia cells. Brain cells were pretreated with MP (100 mM) and incubated according to a deep hypothermia protocol mimicking temperature changes during cardiac surgery in children: deep hypothermia (2 h at 17 degrees C, phase 1), slow rewarming (2 h up to 37 degrees C, phase 2), and normothermia (20 h at 37 degrees C, phase 3). In all brain-related cell types cytotoxicity was investigated as well as the release of the pro-inflammatory cytokine interleukin-6 (IL-6), which plays a major role in neuroprotection and neuroregeneration. Deep hypothermia induces substantial cytotoxicity and the secretion of IL-6 by astrocytes, BV-2 microglia cells and neurons. MP administration has no influence on the cell survival and IL-6 release of normothermic astrocytes, BV-2 microglia cells and neurons, while hypothermia-induced cytotoxicity and IL-6 secretion are significantly suppressed by MP. These data suggest that MP increases cell survival after deep hypothermia but also suppresses important neuroprotective and regenerative processes induced by IL-6. Hence, more specific immune modulation than that provided by MP may be needed to protect the brain during neonatal and pediatric cardiac surgery.
منابع مشابه
Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro
Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max) as primary isoflavones, possess anti-inflammatory activity, but the effect of its active metabolite Equol (7-hydroxy-3-(4'-hydroxyphenyl)-chroman) has not been well established. In this study, we investigated the anti-neu...
متن کاملSpecific enhancement of TLR2 activity in astrocytes, previously activated by microglia
The role of glial cells in neurodegeneration, toxicology and immunity is an expanding area of biomedical research requiring large numbers of animals. Use of the murine microglial cell line BV-2 would accelerate many research programs, and reduce the necessity of continuous cell preparations, provided that the cell line reproduces the situation in primary microglia (PM) with high fidelity. As re...
متن کاملMonascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کاملP 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes
Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...
متن کاملCarum carvi Linn (Umbelliferae) Attenuates Lipopolysaccharide-Induced Neuroinflammatory Responses via Regulation of NF-κB Signaling in BV-2 Microglia
Purpose: To investigate the anti-neuroinflammatory properties of Carum carvi Linn. (CCE, Umbelliferae) aqueous extract in stimulated BV-2 microglial cells and explore its underlying mechanisms. Methods: Cell viability assessment was performed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5diphenyltetrazolium bromide (MTT) assay. Lipopolysaccharide (LPS) was used to activate BV-2 microglia. Nitric oxide (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience letters
دوره 404 3 شماره
صفحات -
تاریخ انتشار 2006