A TATA binding protein mutant with increased affinity for DNA directs transcription from a reversed TATA sequence in vivo.
نویسندگان
چکیده
The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.
منابع مشابه
An inverted TATA box directs downstream transcription of the bone sialoprotein gene.
The orientation of the TATA box is thought to direct downstream transcription of eukaryotic genes by RNA polymerase II. However, the putative TATA box in the promoter of the bone sialoprotein (BSP) gene, which codes for a tissue-specific and developmentally regulated bone matrix protein, is inverted (5'-TTTATA-3') relative to the consensus TATA box sequence (5'-TATAAA-3') and is overlapped by a...
متن کاملEquivalent mutations in the two repeats of yeast TATA-binding protein confer distinct TATA recognition specificities.
To investigate the process of TATA box recognition by the TATA box-binding protein (TBP), we have performed a detailed genetic and biochemical analysis of two Saccharomyces cerevisiae TBP mutants with altered DNA-binding specificity. The mutant proteins have amino acid substitutions (Leu-205 to Phe and Leu-114 to Phe) at equivalent positions within the two repeats of TBP that are involved in TA...
متن کاملFunctional binding of the "TATA" box binding component of transcription factor TFIID to the -30 region of TATA-less promoters.
Many viral and cellular promoters transcribed in higher eukaryotes by RNA polymerase II lack obvious A+T-rich sequences, called "TATA" boxes, that bind the transcription factor TFIID. One such TATA-less promoter, the simian virus 40 major late promoter, contains a genetically important sequence element 30 base pairs upstream of its transcription initiation site that has no obvious sequence simi...
متن کاملThe conformational state of the nucleosome entry–exit site modulates TATA box-specific TBP binding
The TATA binding protein (TBP) is a critical transcription factor used for nucleating assembly of the RNA polymerase II machinery. TBP binds TATA box elements with high affinity and kinetic stability and in vivo is correlated with high levels of transcription activation. However, since most promoters use less stable TATA-less or TATA-like elements, while also competing with nucleosome occupancy...
متن کاملInterdependent interactions between TFIIB, TATA binding protein, and DNA.
Temperature-sensitive mutants of TFIIB that are defective for essential interactions were isolated. One mutation (G204D) results in disruption of a protein-protein contact between TFIIB and TATA binding protein (TBP), while the other (K272I) disrupts an interaction between TFIIB and DNA. The TBP gene was mutagenized, and alleles that suppress the slow-growth phenotypes of the TFIIB mutants were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 22 24 شماره
صفحات -
تاریخ انتشار 2002