Analysis of Variational Bayesian Matrix Factorization
نویسندگان
چکیده
Recently, the variational Bayesian approximation was applied to probabilistic matrix factorization and shown to perform very well in experiments. However, its good performance was not completely understood beyond its experimental success. The purpose of this paper is to theoretically elucidate properties of a variational Bayesian matrix factorization method. In particular, its mechanism of avoiding overfitting is analyzed. Our analysis relies on the key fact that the matrix factorization model induces non-identifiability, i.e., the mapping between factorized matrices and the original matrix is not one-to-one. The positivepart James-Stein shrinkage operator and the Marcenko-Pastur law—the limiting distribution of eigenvalues of the central Wishart distribution—play important roles in our analysis.
منابع مشابه
Implicit Regularization in Variational Bayesian Matrix Factorization
Matrix factorization into the product of lowrank matrices induces non-identifiability, i.e., the mapping between the target matrix and factorized matrices is not one-to-one. In this paper, we theoretically investigate the influence of non-identifiability on Bayesian matrix factorization. More specifically, we show that a variational Bayesian method involves regularization effect even when the p...
متن کاملApproximate Method of Variational Bayesian Matrix Factorization/Completion with Sparse Prior
We derive analytical expression of matrix factorization/completion solution by variational Bayes method, under the assumption that observed matrix is originally the product of low-rank dense and sparse matrices with additive noise. We assume the prior of sparse matrix is Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for derivation of matri...
متن کاملBayesian factorization and selection for speech and music separation
This paper proposes a new Bayesian nonnegative matrix factorization (NMF) for speech and music separation. We introduce the Poisson likelihood for NMF approximation and the exponential prior distributions for the factorized basis matrix and weight matrix. A variational Bayesian (VB) EM algorithm is developed to implement an efficient solution to variational parameters and model parameters for B...
متن کاملBeta Process Non-negative Matrix Factorization with Stochastic Structured Mean-Field Variational Inference
Beta process is the standard nonparametric Bayesian prior for latent factor model. In this paper, we derive a structured mean-field variational inference algorithm for a beta process non-negative matrix factorization (NMF) model with Poisson likelihood. Unlike the linear Gaussian model, which is well-studied in the nonparametric Bayesian literature, NMF model with beta process prior does not en...
متن کاملBayesian independent component analysis: Variational methods and non-negative decompositions
In this paper we present an empirical Bayesian framework for independent component analysis. The framework provides estimates of the sources, the mixing matrix and the noise parameters, and is flexible with respect to choice of source prior and the number of sources and sensors. Inside the engine of the method are two mean field techniques – the variational Bayes and the expectation consistent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009