Energetics and mechanics of terrestrial locomotion. III. Energy changes of the centre of mass as a function of speed and body size in birds and mammals.
نویسندگان
چکیده
This is the third in a series of four papers examining the link between the energetics and mechanics of terrestrial locomotion. It reports measurements of the mechanical work required (ECM, tot) to lift and reaccelerate an animal's centre of mass within each step as a function of speed and body size during level, constant average speed locomotion. A force platform was used in this study to measure ECM, tot for small bipeds, quadrupeds and hoppers. We have already published similar data from large animals. The total power required to lift and reaccelerate the centre of mass (ECM, tot) increased nearly linearly with speed for all the animals. Expressed in mass-specific terms, it was independent of body size and could be expressed by a simple equation: ECM, tot/Mb = 0.685 vg + 0.072 where ECM, tot/Mb has the units of W kg-1 and vg is speed in m s-1. Walking involves the same pendulum-like mechanism in small animals as has been described in humans and large animals. Also, running, trotting and hopping produce similar curves of ECM, tot as a function of time during a stride for both the small and large animals. Galloping, however, appears to be different in small and large animals. In small animals the front legs are used mainly for braking, while the back legs are used to reaccelerate the centre of mass within a stride. In large animals the front and hind legs serve to both brake and reaccelerate the animal; this difference in mechanics is significant in that it does not allow the utilization of elastic energy in the legs of small animals, but does in the legs of large animals.
منابع مشابه
Energetics and mechanics of terrestrial locomotion. II. Kinetic energy changes of the limbs and body as a function of speed and body size in birds and mammals.
This is the second paper in a series examining the link between energetics and mechanics of terrestrial locomotion. In this paper, the changes in the kinetic energy of the limbs and body relative to the centre of mass of an animal (EKE, tot) are measured as functions of speed and body size. High-speed films (light or X-ray) of four species of quadrupeds and four species of bipeds running on a t...
متن کاملEnergetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals.
This series of four papers investigates the link between the energetics and the mechanics of terrestrial locomotion. Two experimental variables are used throughout the study: speed and body size. Mass-specific metabolic rates of running animals can be varied by about tenfold using either variable. This first paper considers metabolic energy consumed during terrestrial locomotion. New data relat...
متن کاملEnergetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals.
This is the final paper in or series examining the link between the energetics and mechanics of terrestrial locomotion. In this paper the kinetic energy of the limbs and body relative to the centre of mass (EKE, tot of paper two) is combined with the potential plus kinetic energy of the centre of mass (ECM, tot of paper three) to obtain the total mechanical energy (excluding elastic energy) of ...
متن کاملThe energetics and cardiorespiratory correlates of mammalian terrestrial locomotion.
Energy costs of locomotion in mammals can be predicted from running speed and body mass, with the minimum cost decreasing regularly with increasing mass (Mb-0.30). The predictive value of this model is surprising, given the differences in gait and limb structure among mammals. The decrease in mass-specific cost cannot be explained by the work done in moving the limbs and the centre of mass, as ...
متن کاملEffect of morphological development on the locomotion function of Nile tilapia, Oreochromis niluticus during early ontogeny
This study was conducted to investigate the hydrodynamic parameters and how morphological changes affect them in Oreochromis niloticus at the National Museum of Natural History-Paris in the winter of 2020. To record fish movement, a high-speed camera (1000 fps) with a macro lens was used. The fish trajectory was taken by calculating coordinates of a center point between the two eyes and kinemat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 97 شماره
صفحات -
تاریخ انتشار 1982