Probabilistic Methods for 3–D Object Recognition

نویسنده

  • Joachim Hornegger
چکیده

A new Bayesian framework for 3–D object classification and localization is introduced. Objects are represented as probability density functions, and observed features are treated as random variables. These probability density functions turn out a non geometric nature of models and characterize the statistical behavior of local object features like points or lines. The parameterization of model densities covers several terms of object recognition: locations and instabilities of features, rotation and translation, projection, the assignment of image and model features, as well as relations. This paper treats especially the probabilistic modeling of relational dependencies between single features. The mathematical framework, the training algorithms, as well as the localization and classification modules are discussed in detail. The experimental evaluation shows the usefulness of the introduced concepts on real image data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Appearance-Based 3-D Face Recognition from Video

In this work we present an appearance-based 3-D Face Recognition approach that is able to recognize faces in video sequences, independent from face pose. For this we combine eigen light-fields with probabilistic propagation over time for evidence integration. Eigen light-fields allow us to build an appearance based 3-D model of an object; probabilistic methods for evidence integration are attra...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Active Object Recognition Integrating

We present an active object recognition strategy which combines the use of an attention mechanism for focusing the search for a 3-D object in a 2-D image, with a viewpoint control strategy for disambiguating recovered object features. The attention mechanism consists of a probabilistic search through a hierarchy of predicted feature observations, taking objects into a set of regions classiied a...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Parallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers

This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996