Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases.

نویسندگان

  • Bryan T Greenhagen
  • Paul E O'Maille
  • Joseph P Noel
  • Joe Chappell
چکیده

Terpene synthases are a mechanistically intriguing family of enzymes that catalyze complex, multistep reactions that are capable of generating hundreds of structurally diverse hydrocarbon and oxygenated scaffolds of biological and commercial importance. Interestingly, distantly related terpene synthases from fungi to plants all contain an invariant three-dimensional fold, and molecular comparisons of their active sites indicate that they are enriched with relatively inert amino acid residues that do not react directly with the reaction intermediates. Therefore, catalytic specificity appears to rely on the contour and dynamics of the active site created by the positioning of amino acid backbones and side chains on this catalytic surface and by supporting layers of residues surrounding the synthase active site cavity. Despite the high degree of structural relatedness among terpene synthases, previous studies suggest that no clear relationship between phylogenic organization and catalytic specificities is easily deciphered. We now report on the reciprocal interconversion of catalytic specificities between two distinct yet evolutionarily related terpene synthases based on the systematic identification and mutational replacement of variable residues within and surrounding the active site. Furthermore, we uncover previously undocumented biosynthetic activity during the interconversion, activity that could have been present in a common ancestor of these two highly related synthases. These results provide a simplified means for mapping structural features that are responsible for functional attributes and a strategy for identifying residues that differentiate divergent biosynthetic properties in phylogenetically related terpene synthases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases.

Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we pr...

متن کامل

Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum

We report the first X-ray crystal structure of ent-kaur-16-ene synthase from Bradyrhizobium japonicum, together with the results of a site-directed mutagenesis investigation into catalytic activity. The structure is very similar to that of the α domains of modern plant terpene cyclases, a result that is of interest since it has been proposed that many plant terpene cyclases may have arisen from...

متن کامل

Terpene Synthases: One Fold, Many Products

Terpene synthases/cyclases yield core structures of some of the most valuable bioactive molecules, such as artemisinin and paclitaxel. A detailed understanding of structure–function relationship of terpene synthases/ cyclases delineates the evolutionary relationship between different enzymes and molecular basis of their strategies to direct and manipulate carbocation intermdiates throughout the...

متن کامل

The membrane bound aromatic p-hydroxybenzoic acid oligoprenyltransferase (UbiA) - how iterative improvements lead to a realistic structure that offers new insights into functional aspects of prenyl transferases and terpene synthases

Prenyltransfering enzymes are at the basis of the vast isoprenoid natural product diversity. 4-Hydroxybenzoate oligoprenyltransferase of E. coli, encoded in the gene ubiA, is a key enzyme in the biosynthetic pathway to ubiquinone. No X-ray structure exists of this membrane protein. It catalyses the prenylation of 4-hydroxybenzoic acid in the 3-position using an oligoprenyl diphosphate as second...

متن کامل

Structure and evolution of linalool synthase.

Plant terpene synthases constitute a group of evolutionarily related enzymes. Within this group, however, enzymes that employ two different catalytic mechanisms, and their associated unique domains, are known. We investigated the structure of the gene encoding linalool synthase (LIS), an enzyme that uses geranyl pyrophosphate as a substrate and catalyzes the formation of linalool, an acyclic mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 26  شماره 

صفحات  -

تاریخ انتشار 2006