Bayesian variable selection for proportional hazards models

نویسندگان

  • Joseph G. IBRAHIM
  • Ming-Hui CHEN
  • Steven N. MacEACHERN
چکیده

The authors consider the problem of Bayesian variable selection for proportional hazards regression models with right censored data. They propose a semi-parametric approach in which a nonparametric prior is specified for the baseline hazard rate and a fully parametric prior is specified for the regression coefficients. For the baseline hazard, they use a discrete gamma process prior, and for the regression coefficients and the model space, they propose a semi-automatic parametric informative prior specification that focuses on the observables rather than the parameters. To implement the methodology, they propose a Markov chain Monte Carlo method to compute the posterior model probabilities. Examples using simulated and real data are given to demonstrate the methodology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Model Averaging in Proportional Hazard Models: Assessing the Risk of a Stroke

In the context of the Cardiovascular Health Study, a comprehensive investigation into the risk factors for stroke, we apply Bayesian model averaging to the selection of variables in Cox proportional hazard models. We use an extension of the leaps and bounds algorithm for locating the models that are to be averaged over and make available S-PLUS software to implement the methods. Bayesian model ...

متن کامل

Bayesian Model Averaging in Proportional Hazard Models: Assessing Stroke Risk

Evaluating the risk of stroke is important in reducing the incidence of this devastating disease. Here, we apply Bayesian model averaging to variable selection in Cox proportional hazard models in the context of the Cardiovascular Health Study, a comprehensive investigation into the risk factors for stroke. We introduce a technique based on the leaps and bounds algorithm which e ciently locates...

متن کامل

A unified framework for fitting Bayesian semiparametric models to arbitrarily censored survival data, including spatially-referenced data

A comprehensive, unified approach to modeling arbitrarily censored spatial survival data is presented for the three most commonly-used semiparametric models: proportional hazards, proportional odds, and accelerated failure time. Unlike many other approaches, all manner of censored survival times are simultaneously accommodated including uncensored, interval censored, current-status, left and ri...

متن کامل

Integration of Multiple Genomic Data Sources in a Bayesian Cox Model for Variable Selection and Prediction

Bayesian variable selection becomes more and more important in statistical analyses, in particular when performing variable selection in high dimensions. For survival time models and in the presence of genomic data, the state of the art is still quite unexploited. One of the more recent approaches suggests a Bayesian semiparametric proportional hazards model for right censored time-to-event dat...

متن کامل

Variable Selection for Cox’s Proportional Hazards Model and Frailty Model By

A class of variable selection procedures for parametric models via nonconcave penalized likelihood was proposed in Fan and Li (2001a). It has been shown there that the resulting procedures perform as well as if the subset of significant variables were known in advance. Such a property is called an oracle property. The proposed procedures were illustrated in the context of linear regression, rob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996