Brownian dynamics simulation of analytical ultracentrifugation experiments
نویسندگان
چکیده
BACKGROUND We have devised a protocol for the Brownian dynamics simulation of an analytical ultracentrifugation experiment that allows for an accurate and efficient prediction of the time-dependent concentration profiles, c(r, t) in the ultracentrifuge cell. The procedure accounts for the back-diffusion, described as a Brownian motion that superimposes to the centrifugal drift, and considers the sector-shaped geometry of the cell and the boundaries imposed by the meniscus and bottom. RESULTS Simulations are carried out for four molecules covering a wide range of the ratio of sedimentation and diffusion coefficients. The evaluation is done by extracting the molecular parameters that were initially employed in the simulation by analyzing the profiles with an independent tool, the well-proved SEDFIT software. The code of simulation algorithm has been parallelized in order to take advantage of current multi-core computers. CONCLUSIONS Our Brownian dynamics simulation procedure may be considered as an alternative to other predictors based in numerical solutions of the Lamm equation, and its efficiency could make it useful in the most relevant, inverse problem, which is that of extracting the molecular parameters from experimentally determined concentration profiles.
منابع مشابه
The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملTwo-Dimensional Reaction of Biological Molecules Studied by Weighted-Ensemble Brownian Dynamics
Computer simulations offer critical insights into the reaction of biological macromolecules, especially when the molecular shapes are too complex to be amenable to analytical solution. In this work, the Weighted-Ensemble Brownian (WEB) Dynamics simulation algorithm is adapted to a reaction of two unlike biological molecules, with the interaction modeled by a two-parameter system: a spherical mo...
متن کاملLike-Charge Attraction through Hydrodynamic Interaction
We demonstrate that the attractive interaction measured between likecharged colloidal spheres near a wall can be accounted for by a nonequilibrium hydrodynamic effect. We present both analytical results and Brownian dynamics simulations which quantitatively capture the onewall experiments of Larsen and Grier (Nature 385, 230, 1997).
متن کاملGravitational Collapse of a Brownian Gas
We investigate a model describing the dynamics of a gas of self-gravitating Brownian particles. This model can also have applications for the chemotaxis of bacterial populations. We focus here on the collapse phase obtained at sufficiently low temperature/energy and on the post-collapse regime following the singular time where the central density diverges. Several analytical results are illustr...
متن کاملFractional Brownian dynamics in proteins.
Correlation functions describing relaxation processes in proteins and other complex molecular systems are known to exhibit a nonexponential decay. The simulation study presented here shows that fractional Brownian dynamics is a good model for the internal dynamics of a lysozyme molecule in solution. We show that both the dynamic structure factor and the associated memory function fit well the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2011