The MOR Cryptosystem and Unitary group in odd characteristic
نویسندگان
چکیده
This paper is a continuation of the work done to understand the security of a MOR cryptosystem over matrix groups defined over a finite field. In this paper we show that in the case of unitary group U(d, q) the security of the MOR cryptosystem is similar to the hardness of the discrete logarithm problem in Fq2d . In our way of developing the MOR cryptosystem, we developed row-column operations for unitary matrices that solves the word problem in the group of unitary matrices. This is similar to row-column operations in special linear groups that write a matrix as a product of elementary transvections.
منابع مشابه
The MOR cryptosystem and extra-special $p$-groups
This paper studies the MOR cryptosystem, using the auto-morphism group of the extra-special p-group of exponent p, for an odd prime p. Similar results can be obtained for extra-special p-groups of exponent p 2 and for the even prime.
متن کاملMOR Cryptosystem and classical Chevalley groups in odd characteristic
In this paper we study the MOR cryptosystem with finite Chevalley groups. There are four infinite families of finite classical Chevalley groups. These are: special linear groups SL(d, q), orthogonal groups O(d, q) and symplectic groups Sp(d, q). The family O(d, q) splits to two different families of Chevalley groups depending on the parity of d. The MOR cryptosystem over SL(d, q) was studied by...
متن کاملA simple generalization of the El-Gamal cryptosystem to non-abelian groups II
The MOR cryptosystem is a generalization of the ElGamal cryptosystem, where the discrete logarithm problem works in the automorphism group of a group G, instead of the group G itself. The framework for the MOR cryptosystem was first proposed by Paeng et al. [13]. Mahalanobis [10] used the group of unitriangular matrices for the MOR cryptosystem. That effort was successful: the MOR cryptosystem ...
متن کاملA Simple Generalization of the Elgamal Cryptosystem to Non-abelian Groups
In this article we study the MOR cryptosystem. We use the group of unitriangular matrices over a finite field as the non-abelian group in the MOR cryptosystem. We show that a cryptosystem similar to the ElGamal cryptosystem over finite fields can be built using the proposed groups and a set of automorphisms of these groups. We also show that the security of this proposed MOR cryptosystem is equ...
متن کاملA simple generalization of El-Gamal cryptosystem to non-abelian groups
In this paper we study the MOR cryptosystem. We use the group of unitriangular matrices over a finite field as the non-abelian group in the MOR cryptosystem. We show that a cryptosystem similar to the El-Gamal cryptosystem over finite fields can be built using the proposed groups and a set of automorphisms of these groups. We also show that the security of this proposed MOR cryptosystem is equi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1409.6136 شماره
صفحات -
تاریخ انتشار 2014