Minimizing detection errors in single molecule localization microscopy.

نویسندگان

  • Pavel Křížek
  • Ivan Raška
  • Guy M Hagen
چکیده

Fluorescence microscopy using single molecule imaging and localization (PALM, STORM, and similar approaches) has quickly been adopted as a convenient method for obtaining multicolor, 3D superresolution images of biological samples. Using an approach based on extensive Monte Carlo simulations, we examined the performance of various noise reducing filters required for the detection of candidate molecules. We determined a suitable noise reduction method and derived an optimal, nonlinear threshold which minimizes detection errors introduced by conventional algorithms. We also present a new technique for visualization of single molecule localization microscopy data based on adaptively jittered 2D histograms. We have used our new methods to image both Atto565-phalloidin labeled actin in fibroblast cells, and mCitrine-erbB3 expressed in A431 cells. The enhanced methods developed here were crucial in processing the data we obtained from these samples, as the overall signal to noise ratio was quite low.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy

Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques' inherent sources of errors such as a limited ...

متن کامل

Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy.

We investigate the cooperative effect of molecular tilt and defocus on fluorophore localization by centroid calculation in far-field superresolution microscopy based on stochastic single molecule switching. If tilt angle and defocus are unknown, the localization contains systematic errors up to about ±125 nm. When imaging rotation-impaired fluorophores of unknown random orientation, the average...

متن کامل

Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy.

The asymmetric nature of single-molecule (SM) dipole emission patterns limits the accuracy of position determination in localization-based super-resolution fluorescence microscopy. The degree of mislocalization depends highly on the rotational mobility of SMs; only for SMs rotating within a cone half angle α > 60° can mislocalization errors be bounded to ≤10 nm. Simulations demonstrate how low ...

متن کامل

Localization accuracy in single-molecule microscopy.

One of the most basic questions in single-molecule microscopy concerns the accuracy with which the location of a single molecule can be determined. Using the Fisher information matrix it is shown that the limit of the localization accuracy for a single molecule is given by, lambda(em)/2pi n(a) square root of gammaAt, where lambda(em), n(a), gamma, A, and t denote the emission wavelength of the ...

متن کامل

Azimuthal Polarization Filtering for Accurate, Precise, and Robust Single-Molecule Localization Microscopy

Many single nanoemitters such as fluorescent molecules produce dipole radiation that leads to systematic position errors in both particle tracking and super-resolution microscopy. Via vectorial diffraction equations and simulations, we show that imaging only azimuthally polarized light in the microscope naturally avoids emission from the z-component of the transition dipole moment, resulting in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2011