Unfair competition governs the interaction of pCPI-17 with myosin phosphatase (PP1-MYPT1)

نویسندگان

  • Joshua J Filter
  • Byron C Williams
  • Masumi Eto
  • David Shalloway
  • Michael L Goldberg
چکیده

The small phosphoprotein pCPI-17 inhibits myosin light-chain phosphatase (MLCP). Current models postulate that during muscle relaxation, phosphatases other than MLCP dephosphorylate and inactivate pCPI-17 to restore MLCP activity. We show here that such hypotheses are insufficient to account for the observed rapidity of pCPI-17 inactivation in mammalian smooth muscles. Instead, MLCP itself is the critical enzyme for pCPI-17 dephosphorylation. We call the mutual sequestration mechanism through which pCPI-17 and MLCP interact inhibition by unfair competition: MLCP protects pCPI-17 from other phosphatases, while pCPI-17 blocks other substrates from MLCP's active site. MLCP dephosphorylates pCPI-17 at a slow rate that is, nonetheless, both sufficient and necessary to explain the speed of pCPI-17 dephosphorylation and the consequent MLCP activation during muscle relaxation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits.

Inhibition of myosin phosphatase is critical for agonist-induced contractility of vascular smooth muscle. The protein CPI-17 is a phosphorylation-dependent inhibitor of myosin phosphatase and, in response to agonists, Thr-38 is phosphorylated by protein kinase C, producing a >1,000-fold increase in inhibitory potency. Here, we addressed how CPI-17 could selectively inhibit myosin phosphatase am...

متن کامل

The Structural Signature of the MYPT1:PP1 Interaction

Muscle relaxation is triggered by the dephosphorylation of Ser19 in the myosin regulatory light chain. This reaction is catalyzed by the holoenzyme myosin phosphatase (MP), which includes the catalytic subunit protein phosphatase 1 (PP1) and the regulatory targeting subunit (MYPT). MYPT1 (myosin phosphatase targeting subunit 1) is responsible for both targeting the holoenzyme to subcellular com...

متن کامل

Extracellular ATP induces assembly and activation of the myosin light chain phosphatase complex in endothelial cells.

OBJECTIVES Extracellular ATP stabilizes the endothelial barrier and inactivates the contractile machinery of endothelial cells. This inactivation relies on dephosphorylation of the regulatory myosin light chain (MLC) due to an activation of the MLC phosphatase (MLCP). To date, activation and function of MLCP in endothelial cells are only partially understood. METHODS Here, the mechanism of ex...

متن کامل

Phosphorylation-dependent autoinhibition of myosin light chain phosphatase accounts for Ca2+ sensitization force of smooth muscle contraction.

The reversible regulation of myosin light chain phosphatase (MLCP) in response to agonist stimulation and cAMP/cGMP signals plays an important role in the regulation of smooth muscle (SM) tone. Here, we investigated the mechanism underlying the inhibition of MLCP induced by the phosphorylation of myosin phosphatase targeting subunit (MYPT1), a regulatory subunit of MLCP, at Thr-696 and Thr-853 ...

متن کامل

Increased myofibrillar protein phosphatase-1 activity impairs rat aortic smooth muscle activation after hypoxia.

We hypothesized that increased myofibrillar type 1 protein phosphatase (PP1) catalytic activity contributes to impaired aortic smooth muscle contraction after hypoxia. Our results show that inhibition of PP1 activity with microcystin-LR (50 nmol/l) or okadaic acid (100 nmol/l) increased phenylephrine- and KCl-induced contraction to a greater extent in aortic rings from rats exposed to hypoxia (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017