Reparameterization invariant distance on the space of curves in the hyperbolic plane

نویسندگان

  • Alice Le Brigant
  • Marc Arnaudon
چکیده

We focus on the study of time-varying paths in the two-dimensional hyperbolic space, and our aim is to define a reparameterization invariant distance on the space of such paths. We adapt the geodesical distance on the space of parameterized plane curves given by Bauer et al. in [1] to the space Imm([0, 1],H) of parameterized curves in the hyperbolic plane. We present a definition which enables to evaluate the difference between two curves, and show that it satisfies the three properties of a metric. Unlike the distance of Bauer et al., the distance obtained takes into account the positions of the curves, and not only their shapes and parameterizations, by including the distance between their origins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reparameterization Invariant Metric on the Space of Curves

This paper focuses on the study of open curves in a manifold M , and proposes a reparameterization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. in [11] to define a reparameterization invariant metric on the space of immersions M = Imm([0,1], M) by pullback of a metric on the tangent bundle TM derived from the Sasaki...

متن کامل

Constructing Reparameterization Invariant Metrics on Spaces of Plane Curves

Metrics on shape spaces are used to describe deformations that take one shape to another, and to define a distance between shapes. We study a family of metrics on the space of curves, which includes several recently proposed metrics, for which the metrics are characterised by mappings into vector spaces where geodesics can be easily computed. This family consists of Sobolev-type Riemannian metr...

متن کامل

R-transforms for Sobolev H-metrics on Spaces of Plane Curves

We consider spaces of smooth immersed plane curves (modulo translations and/or rotations), equipped with reparameterization invariant weak Riemannian metrics involving second derivatives. This includes the full H2-metric without zero order terms. We find isometries (called R-transforms) from some of these spaces into function spaces with simpler weak Riemannian metrics, and we use this to give ...

متن کامل

An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach

‎The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]‎. ‎In [1]‎, ‎Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups ‎and gyrovector spaces for dealing with the Lorentz group and its ‎underlying hyperbolic geometry‎. ‎They defined the Chen addition and then Chen model of hyperbolic geomet...

متن کامل

Isometric Action of Sl2(r) on Homogeneous Spaces

We investigate the SL2(R) invariant geodesic curves with the associated invariant distance function in parabolic geometry. Parabolic geometry naturally occurs in the study of SL2(R) and is placed in between the elliptic and the hyperbolic (also known as the Lobachevsky half-plane and 2dimensional Minkowski space-time) geometries. Initially we attempt to use standard methods of finding geodesics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014