Moments of Generalized Motzkin Paths
نویسنده
چکیده
Abstract: Consider lattice paths in the plane allowing the steps (1,1), (1,-1), and (w,0), for some nonnegative integer w. For n > 1, let E(n,0) denote the set of paths from (0,0) to (n,0) running strictly above the x-axis except initially and finally. Generating functions are given for sums of moments of the ordinates of the lattice points on the paths in E(n,0). In particular, recurrencess are derived for the cardinality, the sum of the first moments (essentially the area), and the sum of the second moments for paths in E(n,0). These recurrences unify known results for w= 0, 1, 2, i.e. those for the Dyck (or Catalan), Motzkin, and Schröder paths, respectively. The sum of the second moments is seen to equal the number of unrestricted paths running from (0,0) to (0,n-2).
منابع مشابه
Dyck Paths, Motzkin Paths, and the Binomial Transform
We study the moments of orthogonal polynomial sequences (OPS) arising from tridiagonal matrices. We obtain combinatorial information about the sequence of moments of some OPS in terms of Motzkin and Dyck paths, and also in terms of the binomial transform. We then introduce an equivalence relation on the set of Dyck paths and some operations on them. We determine a formula for the cardinality of...
متن کاملECO method and hill-free generalized Motzkin paths
In this paper we study the class of generalized Motzkin paths with no hills and prove some of their combinatorial properties in a bijective way; as a particular case we have the Fine numbers, enumerating Dyck paths with no hills. Using the ECO method, we define a recursive construction for Dyck paths such that the number of local expansions performed on each path depends on the number of its hi...
متن کاملHilly poor noncrossing partitions and (2, 3)-Motzkin paths
A hilly poor noncrossing partition is a noncrossing partition with the properties : (1) each block has at most two elements, (2) in its linear representation, any isolated vertex is covered by some arc. This paper defines basic pairs as a combinatorial object and gives the number of hilly poor noncrossing partitions with n blocks, which is closely related to Maximal Davenport-Schinzel sequences...
متن کامل# a 49 Integers 12 ( 2012 ) Inverses of Motzkin and Schröder Paths
The connection between weighted counts of Motzkin paths and moments of orthogonal polynomials is well known. We look at the inverse generating function of Motzkin paths with weighted horizontal steps, and relate it to Chebyshev polynomials of the second kind. The inverse can be used to express the number of paths ending at a certain height in terms of those ending at height 0. Paths of a more g...
متن کاملGeneralized Narayana Polynomials, Riordan Arrays, and Lattice Paths
We study a family of polynomials in two variables, identifying them as the moments of a two-parameter family of orthogonal polynomials. The coefficient array of these orthogonal polynomials is shown to be an ordinary Riordan array. We express the generating function of the sequence of polynomials under study as a continued fraction, and determine the corresponding Hankel transform. An alternati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004