Localization Capability of Cooperative Anti-Intruder Radar Systems

نویسندگان

  • Enrico Paolini
  • Andrea Giorgetti
  • Marco Chiani
  • Riccardo Minutolo
  • Mauro Montanari
چکیده

System aspects of an anti-intruder multistatic radar based on impulse radio ultrawideband (UWB) technology are addressed. The investigated system is composed of one transmitting node and at least three receiving nodes, positioned in the surveillance area with the aim of detecting and locating a human intruder (target) that moves inside the area. Such systems, referred to also as UWB radar sensor networks, must satisfy severe power constraints worldwide imposed by, for example, the Federal Communications Commission (FCC) and by the European Commission (EC) power spectral density masks. A single transmitter-receiver pair (bistatic radar) is considered at first. Given the available transmitted power and the capability of the receiving node to resolve the UWB pulses in the time domain, the surveillance area regions where the target is detectable, and those where it is not, are obtained. Moreover, the range estimation error for the transmitter-receiver pair is discussed. By employing this analysis, a multistatic system is then considered, composed of one transmitter and three or four cooperating receivers. For this multistatic system, the impact of the nodes location on area coverage, necessary transmitted power and localization uncertainty is studied, assuming a circular surveillance area. It is highlighted how area coverage and transmitted power, on one side, and localization uncertainty, on the other side, require opposite criteria of nodes placement. Consequently, the need for a system compromising between these factors is shown. Finally, a simple and effective criterion for placing the transmitter and the receivers is drawn.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Limits of Collision Detection Performance of a Sense-and-Avoid System for Non-Cooperative Air Traffic

Unmanned Aircraft Systems (UAS) face limitations on their utilization in civil airspace because they do not have the ability to Sense and Avoid (SAA) other air traffic. In recent years, there has been growing interest to provide an effective SAA solution for UAS operations. An effective SAA solution must address both cooperative as well as non-cooperative air traffic. A number of different sens...

متن کامل

Joint Time-Frequency Signal Processing Scheme in Forward Scattering Radar with a Rotational Transmitter

This paper explores the concept of a Forward Scattering Radar (FSR) system with a rotational transmitter for target detection and localization. Most of the research and development in FSR used a fixed dedicated transmitter; therefore, the detection of stationary and slow moving target is very difficult. By rotating the transmitter, the received signals at the receiver contain extra information ...

متن کامل

Radar-based intruder detection for a robotic security system

The Mobile Detection Assessment and Response System, Exterior (MDARS-E) provides an automated robotic security capability for storage yards, petroleum tank farms, rail yards, and arsenals. The system includes multiple supervised-autonomous platforms equipped with intrusion detection, barrier assessment, and inventory assessment subsystems commanded from an integrated control station. The MDARS-...

متن کامل

Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization,...

متن کامل

Evaluating the deformation monitoring capability of a ground based SAR system with MIMO antenna

By increasing the applicability of ground-based SAR (GBSAR) systems in geoscience and remote sensing, the development and evaluation of new systems have gained attention. GBSAR systems can be utilized for monitoring areas that are hard to or cannot be seen by the airborne or spaceborne systems. Furthermore, they have better spatial and temporal resolutions and are cost-effective and easy to imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008