Human Pose Estimation Using Exemplars and Part Based Refinement
نویسندگان
چکیده
In this paper, we proposed a fast and accurate human pose estimation framework that combines top-down and bottom-up methods. The framework consists of an initialization stage and an iterative searching stage. In the initialization stage, example based method is used to find several initial poses which are used as searching seeds of the next stage. In the iterative searching stage, a larger number of body parts candidates are generated by adding random disturbance to searching seeds. Belief Propagation (BP) algorithm is applied to these candidates to find the best n poses using the information of global graph model and part image likelihood. Then these poses are further used as searching seeds for the next iteration. To model image likelihoods of parts we designed rotation invariant EdgeField features based on which we learnt boosted classifiers to calculate the image likelihoods. Experiment result shows that our framework is both fast and accurate.
منابع مشابه
تخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما
Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...
متن کاملA Framework for Human Pose Estimation in Videos
In this paper, we present a method to estimate a sequence of human poses in unconstrained videos. We aim to demonstrate that by using temporal information, the human pose estimation results can be improved over image based pose estimation methods. In contrast to the commonly employed graph optimization formulation, which is NP-hard and needs approximate solutions, we formulate this problem into...
متن کاملاستفاده از برآورد حالتهای پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با دادههای کینکت
Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...
متن کاملCamera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کاملLying Pose Recognition for Elderly Fall Detection
This paper proposes a pipeline for lying pose recognition from single images, which is designed for health-care robots to find fallen people. We firstly detect object bounding boxes by a mixture of viewpoint-specific part based model detectors and later estimate a detailed configuration of body parts on the detected regions by a finer tree-structured model. Moreover, we exploit the information ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010