Unsupervised Testing Strategies for ASR

نویسندگان

  • Brian Strope
  • Doug Beeferman
  • Alexander Gruenstein
  • Xin Lei
چکیده

This paper describes unsupervised strategies for estimating relative accuracy differences between acoustic models or language models used for automatic speech recognition. To test acoustic models, the approach extends ideas used for unsupervised discriminative training to include a more explicit validation on held out data. To test language models, we use a dual interpretation of the same process, this time allowing us to measure differences by exploiting expected ‘truth gradients’ between strong and weak acoustic models. The paper shows correlations between supervised and unsupervised measures across a range of acoustic model and language model variations. We also use unsupervised tests to assess the non-stationary nature of mobile speech input.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating MAP, marginals, and unsupervised language model adaptation

We investigate the integration of various language model adaptation approaches for a cross-genre adaptation task to improve Mandarin ASR system performance on a recently introduced new genre, broadcast conversation (BC). Various language model adaptation strategies are investigated and their efficacies are evaluated based on ASR performance, including unsupervised language model adaptation from...

متن کامل

Unsupervised acoustic model training using multiple seed ASR systems

Unsupervised acoustic modeling can offer a cost and time effective way of creating a solid acoustic model for any under-resourced language. This paper explores the novel idea of using two independent ASR systems to transcribe new speech data, align and filter the ASR hypotheses and use the presumably correct transcriptions to iteratively improve the two seed ASR systems. In parallel, the newly ...

متن کامل

Extracting Domain Invariant Features by Unsupervised Learning for Robust Automatic Speech Recognition

The performance of automatic speech recognition (ASR) systems can be significantly compromised by previously unseen conditions, which is typically due to a mismatch between training and testing distributions. In this paper, we address robustness by studying domain invariant features, such that domain information becomes transparent to ASR systems, resolving the mismatch problem. Specifically, w...

متن کامل

Unsupervised topic adaptation for morph-based speech recognition

Topic adaptation in automatic speech recognition (ASR) refers to the adaptation of language model and vocabulary for improved recognition of in-domain speech data. In this work we implement unsupervised topic adaptation for morph-based ASR, to improve recognition of foreign entity names. Based on first-pass ASR hypothesis similar texts are selected from a collection of articles, which are used ...

متن کامل

Speech Recognition for the iCub Platform

This paper describes open source software (available at https://github.com/robotology/ natural-speech) to build automatic speech recognition (ASR) systems and run them within the YARP platform. The toolkit is designed (i) to allow non-ASR experts to easily create their own ASR system and run it on iCub and (ii) to build deep learning-based models specifically addressing the main challenges an A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011