Role of Sodium in ADP- and Megakaryocyte Spreading Thrombin-induced
نویسندگان
چکیده
ABSTRACr We investigated the role of sodium in megakaryocyte spreading induced by thrombin and ADP. We found that if extracellular sodium was replaced by lithium, potassium, or choline, spreading was inhibited. When extracellular sodium was present, amiloride or tetrodotoxin inhibited spreading. Using intracellular recording we found spreading to be associated with a permanent membrane depolarization. The extent and rate of thrombin-induced depolarization was reduced when lithium replaced sodium. Unspread cells had an average membrane potential of -44.8 mV. Spread cells had an average membrane potential of -18.46 mV. When choline replaced sodium, or when in the presence of tetrodotoxin and amiloride, the spread cells repolarized, indicating that the depolarization is due to an increase in sodium permeability. Similar treatments did not change the membrane potential of unspread cells. Incubation of megakaryocytes with A23187 together with monensin or methylamine induced spreading. Methylamine occasionally caused spreading by itself, but neither ionophore alone caused spreading. These results indicate that megakaryocyte spreading induced by ADP and thrombin depends on an increase in sodium conductance.
منابع مشابه
Role of sodium in ADP- and thrombin-induced megakaryocyte spreading
We investigated the role of sodium in megakaryocyte spreading induced by thrombin and ADP. We found that if extracellular sodium was replaced by lithium, potassium, or choline, spreading was inhibited. When extracellular sodium was present, amiloride or tetrodotoxin inhibited spreading. Using intracellular recording we found spreading to be associated with a permanent membrane depolarization. T...
متن کاملDisabled-2 is required for efficient hemostasis and platelet activation by thrombin in mice.
OBJECTIVE The essential role of platelet activation in hemostasis and thrombotic diseases focuses attention on unveiling the underlying intracellular signals of platelet activation. Disabled-2 (Dab2) has been implicated in platelet aggregation and in the control of clotting responses. However, there is not yet any in vivo study to provide direct evidence for the role of Dab2 in hemostasis and p...
متن کاملA thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V.
Glycoprotein (GP) V is a major substrate cleaved by the protease thrombin during thrombin-induced platelet activation. Previous analysis of platelets from GP V-null mice suggested a role for GP V as a negative modulator of platelet activation by thrombin. We now report the mechanism by which thrombin activates GP V -/- platelets. We show that proteolytically inactive forms of thrombin induce ro...
متن کاملThe role of ADP secretion and thromboxane synthesis in factor VIII binding to platelets.
Following stimulation with arachidonic acid, collagen, U-46619 (a stable analogue of prostaglandin endoperoxide/thromboxane-A2), thrombin, or adenosine diphosphate (ADP), unstirred human platelet suspensions bound labeled factor VIII in a reaction that reached equilibrium within 10 min. Apyrase inhibited binding induced by arachidonic acid, collagen, U-46619, and thrombin by less than 40%, but ...
متن کاملEffects of recombinant human megakaryocyte growth and development factor on platelet activation.
The c-Mpl receptor for thrombopoietin and its recombinant related protein, the megakaryocyte growth and development factor (MGDF), is also expressed on circulating platelets. In the present study we evaluated the effect of MGDF on platelet aggregation in platelet-rich plasma (PRP) and in whole blood. The results obtained indicate that MGDF by itself did not affect platelet aggregation. However,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002