Symmetry and integrability in Hamiltonian normal forms
نویسنده
چکیده
منابع مشابه
Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملMeasures of Chaos in Hamiltonian Systems
Hamiltonian systems with two or more degrees of freedom are generally nonintegrable which usually involves chaotic dynamics. The size of the chaotic sets determines for a large part the nature and influence of chaos. Near stable equilibrium we can obtain normal forms that often produce ‘formal integrability’ of the Hamiltonian system and at the same time produce rigorous but not necessarily opt...
متن کاملPoincaré normal and renormalized forms
Normal forms were introduced by Poincaré as a tool to integrate nonlinear systems; by now we know this is in general impossible, but it turned out that the usefulness of normal forms goes well beyond integrability. An introduction to normal forms is provided e.g. in [3, 5, 26, 41, 43, 47, 63]; see also [10, 33]. An introduction to normal forms for Hamiltonian systems is given in appendix 7 of [...
متن کاملA suggestion for an integrability notion for two dimensional spin systems
We suggest that trialgebraic symmetries might be a sensible starting point for a notion of integrability for two dimensional spin systems. For a simple trialgebraic symmetry we give an explicit condition in terms of matrices which a Hamiltonian realizing such a symmetry has to satisfy and give an example of such a Hamiltonian which realizes a trialgebra recently given by the authors in another ...
متن کاملIntegrability and Conformal Symmetry in the BCS model
The exactly solvable BCS Hamiltonian of superconductivity is considered from several viewpoints: Richardson’s ansatz, conformal field theory, integrable inhomogenous vertex models and Chern-Simons theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997