Cobordism of Morse functions on surfaces, the universal complex of singular fibers and their application to map germs
نویسندگان
چکیده
We give a new and simple proof for the computation of the oriented and the unoriented fold cobordism groups of Morse functions on surfaces. We also compute similar cobordism groups of Morse functions based on simple stable maps of 3–manifolds into the plane. Furthermore, we show that certain cohomology classes associated with the universal complexes of singular fibers give complete invariants for all these cobordism groups. We also discuss invariants derived from hypercohomologies of the universal homology complexes of singular fibers. Finally, as an application of the theory of universal complexes of singular fibers, we show that for generic smooth map germs g : (R3, 0)→ (R2, 0) with R2 being oriented, the algebraic number of cusps appearing in a stable perturbation of g is a local topological invariant of g .
منابع مشابه
Cobordism Group of Morse Functions on Unoriented Surfaces
Ikegami and Saeki have proved that the cobordism group of Morse functions on oriented surfaces is an infinite cyclic group. Their method is applicable with a little modification to the computation of the cobordism group of Morse functions on unoriented surfaces. We prove that this group is isomorphic to the direct sum of the infinite cyclic group and the finite group of order two.
متن کاملPontryagin-thom-szűcs Type Construction for Non-positive Codimensional Singular Maps with Prescribed Singular Fibers
We give a Pontryagin-Thom-Szűcs type construction for non-positive codimensional singular maps, and obtain results about cobordism and bordism groups of −1 codimensional stable maps with prescribed singular fibers.
متن کاملInvariants of D(q, p) singularities
The study of the geometry of non-isolated hypersurface singularities was begun by Siersma and his students ([11],[12],[9],[10]). The basic examples of such functions defining these singularities are the A(d) singularities and the D(q, p) singularities. The A(d) singularities, up to analytic equivalence, are the product of a Morse function and the zero map, while the simplest D(q, p) singularity...
متن کاملL_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملCobordisms of Fold Maps of 4-manifolds into the Space
We compute the oriented cobordism group of fold maps of 4-manifolds into R 3 with all the possible restrictions (and also with no restriction) to the singular fibers. We also give geometric invariants which describe completely the cobordism group of fold maps.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006