Quantum gravity and cosmological observations
نویسنده
چکیده
Quantum gravity places entirely new challenges on the formulation of a consistent theory as well as on an extraction of potentially observable effects. Quantum corrections due to the gravitational field are commonly expected to be tiny because of the smallness of the Planck length. However, a consistent formulation now shows that key features of quantum gravity imply magnification effects on correction terms which are especially important in cosmology with its long stretches of evolution. After a review of the salient features of recent canonical quantizations of gravity and their implications for the quantum structure of space-time a new example for potentially observable effects is given.
منابع مشابه
Study of a Restricted Modified Gravity on astrophysical and cosmological scales
p { margin-bottom: 0in; direction: rtl; text-align: right; }p.ctl { font-size: 12pt; }a:link { color: rgb(0, 0, 255); } In this paper, we study a restricted modified gravity in which diffeomorphism symmetry is broken. We investigate the astrophysical implications of the model by using the corresponding gravitational potential. By using the weight function of the weak lensing , for the model,...
متن کاملRenormalizable Quantum Gauge Theory of Gravity
The quantum gravity is formulated based on gauge principle. The model discussed in this paper has local gravitational gauge symmetry and gravitational field is represented by gauge potential. A preliminary study on gravitational gauge group is presented. Path integral quantization of the theory is discussed in the paper. A strict proof on the renormalizability of the theory is also given. In le...
متن کاملQuantum Gravity Resolution to the Cosmological Constant Problem
A finite quantum gravity theory is used to resolve the cosmological constant problem. A fundamental quantum gravity scale, ΛG ≤ 10 −3 eV, is introduced above which the quantum corrections to the vacuum energy density coupled to gravity are exponentially suppressed by a graviton vertex form factor, yielding an observationally acceptable value for the particle physics contribution to the cosmolog...
متن کاملUsing neutron stars and primordial black holes to test theories of quantum gravity
Three observational tests of cosmological natural selection, a theory that follows from some hypotheses about quantum gravity, are described. If true, this theory explains the choices of the parameters of the standard model of particle physics. The first, the observation of a pulsar with mass greater than 2.5M◦, would cleanly refute the theory. The second and third, having to do with primordial...
متن کاملToward a Background Independent Quantum Theory of Gravity
Any canonical quantum theory can be understood to arise from the compatibility of the statistical geometry of distinguishable observations with the canonical Poisson structure of Hamiltonian dynamics. This geometric perspective offers a novel, background independent non-perturbative formulation of quantum gravity. We invoke a quantum version of the equivalence principle, which requires both the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008