Cellular response of limbal epithelial cells on electrospun poly-ε-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study
نویسندگان
چکیده
PURPOSE The aim of this study was to develop a synthetic stromal substrate for limbal epithelial cell (LEC) expansion that can serve as a potential alternative substrate to replace human amniotic membrane (HAM). METHODS Nanofibers were fabricated using 10% poly-ε-caprolactone (PCL) solution dissolved in trifluoroethanol (TFE) via an electrospinning process. Nanofibers were characterized for surface morphology, wetting ability, pore size, mechanical strength, and optical transparency using scanning electron microscopy (SEM), contact angle measurement, microtensile tester, and UV-Vis spectrophotometer, respectively. The human corneal epithelial (HCE-T) cell line was used to evaluate the biocompatibility of nanofibers based on their phenotypic profile, viability, proliferation, and attachment ability. Subsequently, human LECs were cultivated on biocompatible nanofibers for two weeks and their proliferation capability analyzed using MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) proliferation assay. Immunofluorescent (IF) staining and reverse transcriptase polymerase chain reaction (RT-PCR) were performed to check the molecular marker expression; SEM was used to study the morphology. RESULTS The average fiber diameter of PCL was 132±42 nm. Pore size varied from 0.2 to 4 microns with a porosity of 85%. The tensile strength of the PCL membrane was 1.74±0.18 MPa (Mega Pascal); strain was 30.08±2.66%. The water contact angle was 90°. Biocompatibility results indicated that the polymer surface was highly biocompatible, as HCE-T cells could favorably attach and proliferate on the polymer surface. SEM figures showed that the corneal epithelium was firmly anchored to the polymer surface via a continuous cell sheet and was able to retain a normal corneal phenotype. MTT assay confirmed that cells were metabolically active on nanofibers (p<0.05) and gradually increased in their number for up to two weeks. IF and RT-PCR results revealed no change in the expression profile of LECs grown on nanofibers when compared to those grown on glass coverslips and human amniotic membrane (HAM). Confocal microscopy illustrated that cells infiltrated the nanofibers and successfully formed a three-dimensional (3D) corneal epithelium, which was viable for two weeks. CONCLUSIONS Electrospun nanofibers provide not only a milieu supporting LEC expansion, but also serve as a useful alternative carrier for ocular surface tissue engineering and could be used as an alternative substrate to HAM.
منابع مشابه
Fabrication of Poly(ε-Caprolactone), Hydrophilic and β-Tricalcium Phosphate Layer- by -Layer Nanofibrous Scaffolds for Tissue Engineering
In this study, using biodegradable polymers, nanofiberouse scaffolds were fabricated from the layer-by-layer electrospinning method, including two layer that poly (ε-caprolactone), polyvinylpyrrolidone deposited at first layer and poly (ε-caprolactone), polyvinyl alcohol , β-tricalcium phosphate at latter. After prepration of scaffolds, scanning electron microscopy (SEM), swelling, porosity, me...
متن کاملPreparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite
Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the...
متن کاملElectrospun collagen/poly(L-lactic acid-co-ε-caprolactone) scaffolds for conjunctival tissue engineering
Conjunctival injuries are general but intractable ocular surface diseases, the sequelae of which are particularly challenging to treat. A promising therapy for conjunctival injuries is to employ biodegradable scaffolds to deliver conjunctival epithelial cells for repairing damaged or diseased conjunctiva. In the present study, an ultrathin porous nanofibrous scaffold was fabricated by using col...
متن کامل3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering
The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...
متن کاملNano-Graphene Oxide Functionalized Bioactive Poly(lactic acid) and Poly(ε-caprolactone) Nanofibrous Scaffolds
A versatile and convenient way to produce bioactive poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) electrospun nanofibrous scaffolds is described. PLA and PCL are extensively used as biocompatible scaffold materials for tissue engineering. Here, biobased nano graphene oxide dots (nGO) are incorporated in PLA or PCL electrospun scaffolds during the electrospinning process aiming to enhan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2011