A computational screen for mammalian pseudouridylation guide H/ACA RNAs.

نویسندگان

  • Peter Schattner
  • Sergio Barberan-Soler
  • Todd M Lowe
چکیده

The box H/ACA RNA gene family is one of the largest non-protein-coding gene families in eukaryotes and archaea. Recently, we developed snoGPS, a computational screening program for H/ACA snoRNAs, and applied it to Saccharomyces cerevisiae. We report here results of extending our method to screen for H/ACA RNAs in multiple large genomes of related species, and apply it to the human, mouse, and rat genomes. Because of the 250-fold larger search space compared to S. cerevisiae, significant enhancements to our algorithms were required. Complementing extensive cloning experiments performed by others, our findings include the detection and experimental verification of seven new mammalian H/ACA RNAs and the prediction of 23 new H/ACA RNA pseudouridine guide assignments. These assignments include four for H/ACA RNAs previously classified as orphan H/ACA RNAs with no known targets. We also determined systematic syntenic conservation among human and mouse H/ACA RNAs. With this work, 82 of 97 ribosomal RNA pseudouridines and 18 of 32 spliceosomal RNA pseudouridines in mammals have been linked to H/ACA guide RNAs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human box H/ACA pseudouridylation guide RNA machinery.

Pseudouridine, the most abundant modified nucleoside in RNA, is synthesized by posttranscriptional isomerization of uridines. In eukaryotic RNAs, site-specific synthesis of pseudouridines is directed primarily by box H/ACA guide RNAs. In this study, we have identified 61 novel putative pseudouridylation guide RNAs by construction and characterization of a cDNA library of human box H/ACA RNAs. T...

متن کامل

Dynamic interactions within sub-complexes of the H/ACA pseudouridylation guide RNP

H/ACA RNP complexes change uridines to pseudouridines in target non-coding RNAs in eukaryotes and archaea. H/ACA RNPs are comprised of a guide RNA and four essential proteins: Cbf5 (pseudouridine synthase), L7Ae, Gar1 and Nop10 in archaea. The guide RNA captures the target RNA via two antisense elements brought together to form a contiguous binding site within the pseudouridylation pocket (inte...

متن کامل

H/ACA guide RNAs, proteins and complexes.

H/ACA guide RNAs direct site-specific pseudouridylation of substrate RNAs by forming ribonucleoprotein (RNP) complexes with pseudouridine synthase Cbf5 and three accessory proteins. Recently determined crystal structures of H/ACA protein complexes and a fully assembled H/ACA RNP complex have provided significant insights into the architecture, assembly and mechanism of action of RNA-guided pseu...

متن کامل

Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome.

One of the largest families of small RNAs in eukaryotes is the H/ACA small nucleolar RNAs (snoRNAs), most of which guide RNA pseudouridine formation. So far, an effective computational method specifically for identifying H/ACA snoRNA gene sequences has not been established. We have developed snoGPS, a program for computationally screening genomic sequences for H/ACA guide snoRNAs. The program i...

متن کامل

A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs.

Eukaryotic rRNAs possess numerous post-transcriptionally modified nucleotides. The most abundant modifications, 2'-O-ribose methylation and pseudouridylation, occur in the nucleolus during rRNA processing. The nucleolus contains a large number of small nucleolar RNAs (snoRNAs) most of which can be classified into two distinct families defined by conserved sequence boxes and common associated pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RNA

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2006