Global minimization of a mutivariate polynomial using matrix methods
نویسندگان
چکیده
The problem of minimizing a polynomial function in several variables over Rn is considered and an algorithm is given. When the polynomial has a minimum the algorithm returns the global minimum and nds at least one point in every connected component of the set of minimizers. A characterization of such points is given. When the polynomial does not have a minimum the algorithm can compute its in mum. No assumption is made on the polynomial. The algorithm can be applied for solving a system of polynomial equations. 2000 Mathematics Subject Classi cation: 90C30,13P10.
منابع مشابه
Determination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملGlobal Minimization of a Multivariate Polynomial using Matrix Methods
The problem of minimizing a polynomial function in several variables over R n is considered and an algorithm is given. When the polynomial has a minimum the algorithm returns the global minimum and nds at least one point in every connected component of the set of minimizers. A characterization of such points is given. When the polynomial does not have a minimum the algorithm can compute its inn...
متن کاملGlobal optimization of factor models using alternating minimization
Learning new representations in machine learning is often tackled using a factorization of the data. For many such problems, including sparse coding and matrix completion, learning these factorizations can be difficult, in terms of efficiency and to guarantee that the solution is a global minimum. Recently, a general class of objectives have been introduced, called induced regularized factor mo...
متن کاملGlobal Quadratic Minimization over Bivalent Constraints: Necessary and Sufficient Global Optimality Condition
In this paper, we establish global optimality conditions for quadratic optimization problems with quadratic equality and bivalent constraints. We first present a necessary and sufficient condition for a global minimizer of quadratic optimization problems with quadratic equality and bivalent constraints. Then, we examine situations where this optimality condition is equivalent to checking the po...
متن کاملGlobal optimization of factor models and dictionary learning using alternating minimization
Learning new representations in machine learning is often tackled using a factorization of the data. For many such problems, including sparse coding and matrix completion, learning these factorizations can be difficult, in terms of efficiency and to guarantee that the solution is a global minimum. Recently, a general class of objectives have been introduced, called induced regularized factor mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001