PMA-Induced THP-1 Macrophage Differentiation is Not Impaired by Citrate-Coated Platinum Nanoparticles

نویسندگان

  • Francesca Gatto
  • Roberta Cagliani
  • Tiziano Catelani
  • Daniela Guarnieri
  • Mauro Moglianetti
  • Pier Paolo Pompa
  • Giuseppe Bardi
چکیده

The innate immune system consists of several complex cellular and molecular mechanisms. During inflammatory responses, blood-circulating monocytes are driven to the sites of inflammation, where they differentiate into tissue macrophages. The research of novel nanomaterials applied to biomedical sciences is often limited by their toxicity or dangerous interactions with the immune cell functions. Platinum nanoparticles (PtNPs) have shown efficient antioxidant properties within several cells, but information on their potential harmful role in the monocyte-to-macrophage differentiation process is still unknown. Here, we studied the morphology and the release of cytokines in PMA-differentiated THP-1 pre-treated with 5 nm PtNPs. Although NP endocytosis was evident, we did not find differences in the cellular structure or in the release of inflammatory cytokines and chemokines compared to cells differentiated in PtNP-free medium. However, the administration of PtNPs to previously differentiated THP-1 induced massive phagocytosis of the PtNPs and a slight metabolism decrease at higher doses. Further investigation using undifferentiated and differentiated neutrophil-like HL60 confirmed the harmlessness of PtNPs with non-adherent innate immune cells. Our results demonstrate that citrate-coated PtNPs are not toxic with these immune cell lines, and do not affect the PMA-stimulated THP-1 macrophage differentiation process in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ezetimibe inhibits PMA-induced monocyte/macrophage differentiation by altering microRNA expression: a novel anti-atherosclerotic mechanism.

Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol both in monotherapy or combined with a statin. However, its effect on atherosclerosis plaque progression is certainly unknown. MicroRNAs are short non-encoding RNA molecules dynamically implicated in monocytic differentiation which is considered an essential process during atheroscleros...

متن کامل

Pleiotropic benefits of metformin: macrophage targeting its anti-inflammatory mechanisms.

Metformin is a biguanide family member used in the treatment of type 2 diabetes and one of the most widely prescribed antidiabetes drugs. This drug increases the peripheral uptake of glucose, decreases hepatic glucose production, and reduces insulin resistance in liver and skeletal muscle. The exact molecular mechanisms responsible for its effect on glucose homeostasis are still not completely ...

متن کامل

Impaired trafficking of choline transporter-like protein-1 at plasma membrane and inhibition of choline transport in THP-1 monocyte-derived macrophages.

The present study investigates choline transport processes and regulation of choline transporter-like protein-1 (CTL1) in human THP-1 monocytic cells and phorbol myristate 13-acetate (PMA)-differentiated macrophages. Choline uptake is saturable and therefore protein-mediated in both cell types, but its transport characteristics change soon after treatments with PMA. The maximal rate of choline ...

متن کامل

IL-32θ inhibits monocytic differentiation of leukemia cells by attenuating expression of transcription factor PU.1

PU.1 is a key transcription factor regulating the myeloid differentiation. PU.1-induced monocytic differentiation into macrophage is also important for blood cancer development. Therefore, we chose THP-1 monocytic leukemia cells to investigate the function of a recently discovered IL-32θ. Genetic analyses identified differences in the sequences of IL-32θ and IL-32β. Using previously established...

متن کامل

Down-regulation of HOXA4, HOXA7, HOXA10, HOXA11 and MEIS1 during monocyte-macrophage differentiation in THP-1 cells.

The translocation t(9;11)(p22;q23) generates the MLL-AF9 oncogene and is commonly associated with monocytic acute myeloid leukemia (AML-M5; FAB-classification). For the oncogenicity of MLL-AF9, the (over)expression of several other genes, including selected HOXA cluster genes as well as MEIS1 (a HOX cofactor), is required. We previously showed that the down-regulation of MLL-AF9 expression is n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017