A Fast Hybrid Algorithm for Large-Scale l1-Regularized Logistic Regression

نویسندگان

  • Jianing Shi
  • Wotao Yin
  • Stanley Osher
  • Paul Sajda
چکیده

l1-regularized logistic regression, also known as sparse logistic regression, is widely used in machine learning, computer vision, data mining, bioinformatics and neural signal processing. The use of l1 regularization attributes attractive properties to the classifier, such as feature selection, robustness to noise, and as a result, classifier generality in the context of supervised learning. When a sparse logistic regression problem has large-scale data in high dimensions, it is computationally expensive to minimize the non-differentiable l1-norm in the objective function. Motivated by recent work (Koh et al., 2007; Hale et al., 2008), we propose a novel hybrid algorithm based on combining two types of optimization iterations: one being very fast and memory friendly while the other being slower but more accurate. Called hybrid iterative shrinkage (HIS), the resulting algorithm is comprised of a fixed point continuation phase and an interior point phase. The first phase is based completely on memory efficient operations such as matrix-vector multiplications, while the second phase is based on a truncated Newton’s method. Furthermore, we show that various optimization techniques, including line search and continuation, can significantly accelerate convergence. The algorithm has global convergence at a geometric rate (a Q-linear rate in optimization terminology). We present a numerical comparison with several existing algorithms, including an analysis using benchmark data from the UCI machine learning repository, and show our algorithm is the most computationally efficient without loss of accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Implementation of l 1 Regularized Learning Algorithms Using Gradient Descent Methods ∗

With the advent of high-throughput technologies, l1 regularized learning algorithms have attracted much attention recently. Dozens of algorithms have been proposed for fast implementation, using various advanced optimization techniques. In this paper, we demonstrate that l1 regularized learning problems can be easily solved by using gradient-descent techniques. The basic idea is to transform a ...

متن کامل

Fast Implementation of ℓ1Regularized Learning Algorithms Using Gradient Descent Methods

With the advent of high-throughput technologies, l1 regularized learning algorithms have attracted much attention recently. Dozens of algorithms have been proposed for fast implementation, using various advanced optimization techniques. In this paper, we demonstrate that l1 regularized learning problems can be easily solved by using gradient-descent techniques. The basic idea is to transform a ...

متن کامل

Efficient L1 Regularized Logistic Regression

L1 regularized logistic regression is now a workhorse of machine learning: it is widely used for many classification problems, particularly ones with many features. L1 regularized logistic regression requires solving a convex optimization problem. However, standard algorithms for solving convex optimization problems do not scale well enough to handle the large datasets encountered in many pract...

متن کامل

An Efficient Method for Large-Scale l1-Regularized Convex Loss Minimization

Convex loss minimization with l1 regularization has been proposed as a promising method for feature selection in classification (e.g., l1-regularized logistic regression) and regression (e.g., l1-regularized least squares). In this paper we describe an efficient interior-point method for solving large-scale l1-regularized convex loss minimization problems that uses a preconditioned conjugate gr...

متن کامل

Multiplicative Updates for L1-Regularized Linear and Logistic Regression

Multiplicative update rules have proven useful in many areas of machine learning. Simple to implement, guaranteed to converge, they account in part for the widespread popularity of algorithms such as nonnegative matrix factorization and Expectation-Maximization. In this paper, we show how to derive multiplicative updates for problems in L1-regularized linear and logistic regression. For L1–regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2010