On Generic Quadratic Forms
نویسنده
چکیده
Based on Totaro’s computation of the Chow ring of classifying spaces for orthogonal groups, we compute the Chow rings of all orthogonal Grassmannians associated with a generic quadratic form of any dimension. This closes the gap between the known particular cases of the quadric and the highest orthogonal Grassmannian. We also relate two different notions of generic quadratic forms.
منابع مشابه
Applications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملSpecialization of Forms in the Presence of Characteristic 2: First Steps
We outline a specialization theory of quadratic and (symmetric) bilinear forms with respect to a place λ : K → L∪∞. Here K,L denote fields of any characteristic. We have to make a distinction between bilinear forms and quadratic forms and study them both over fields and valuation rings. For bilinear forms this turns out to be essentially as easy as in the case char L 6= 2, albeit no general can...
متن کاملSpecialization of Quadratic and Symmetric Bilinear Forms
• Chapters III and IV are in preparation. Preface A Mathematician Said Who Can Quote Me a Theorem that's True? For the ones that I Know Are Simply not So, When the Characteristic is Two! This pretty limerick first came to my ears in May 1998 during a talk by T.Y. Lam on field invariants from the theory of quadratic forms. 1 It is – poetic exaggeration allowed – a suitable motto for this monogra...
متن کاملGeneric Splitting Towers and Generic Splitting Preparation of Quadratic Forms
This manuscript describes how a generic splitting tower of a regular anisotropic quadratic form digests the form down to a form which is totally
متن کاملApproximating the Distributions of Singular Quadratic Expressions and their Ratios
Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017