Consistent Spherical Parameterization
ثبت نشده
چکیده
Many applications benefit from surface parameterization, including texture mapping, morphing, remeshing, compression, object recognition, and detail transfer, because processing is easier on the domain than on the original irregular mesh. We present a method for simultaneously parameterizing several genus-0 meshes possibly with boundaries onto a common spherical domain, while ensuring that corresponding user-highlighted features on each of the meshes map to the same domain locations. We obtain visually smooth parameterizations without any cuts, and the constraints enable us to directly associate semantically important features such as animal limbs or facial detail. Our method is robust and works well with either sparse or dense sets of constraints. Figure 1: By spherically embedding a set of models such that corresponding user-provided features map to the same spherical locations, we enable applications such as principal component analysis as shown on the right. Stretch efficiencies (left to right): 0.847, 0.795, 0.879, 0.884, 0.827.
منابع مشابه
Consistent Spherical Parameterization
Many applications benefit from surface parameterization, including texture mapping, morphing, remeshing, compression, object recognition, and detail transfer, because processing is easier on the domain than on the original irregular mesh. We present a method for simultaneously parameterizing several genus-0 meshes possibly with boundaries onto a common spherical domain, while ensuring that corr...
متن کاملFLASH: Fast Landmark Aligned Spherical Harmonic Parameterization for Genus-0 Closed Brain Surfaces
Surface registration between cortical surfaces is crucial in medical imaging for performing systematic comparisons between brains. Landmark-matching registration that matches anatomical features, called the sulcal landmarks, is often required to obtain a meaningful 1-1 correspondence between brain surfaces. This is commonly done by parameterizing the surface onto a simple parameter domain, such...
متن کاملConformal Spherical Parametrization for High Genus Surfaces
Surface parameterization establishes bijective maps from a surface onto a topologically equivalent standard domain. It is well known that the spherical parameterization is limited to genus-zero surfaces. In this work, we design a new parameter domain, two-layered sphere, and present a framework for mapping high genus surfaces onto sphere. This setup allows us to transfer the existing applicatio...
متن کاملSpherical Conformal Parameterization of Genus-0 Point Clouds for Meshing
Point cloud is the most fundamental representation of 3D geometric objects. Analyzing and processing point cloud surfaces is important in computer graphics and computer vision. However, most of the existing algorithms for surface analysis require connectivity information. Therefore, it is desirable to develop a mesh structure on point clouds. This task can be simplified with the aid of a parame...
متن کاملFast Spherical Quasiconformal Parameterization of Genus-0 Closed Surfaces with Application to Adaptive Remeshing
In this work, we are concerned with the spherical quasiconformal parameterization of genus-0 closed surfaces. Given a genus-0 closed triangulated surface and an arbitrary user-defined quasiconformal distortion, we propose a fast algorithm for computing a spherical parameterization of the surface that satisfies the prescribed distortion. The proposed algorithm can be effectively applied to adapt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004