Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes

نویسندگان

  • John F. Emery
  • Sandra K. Floyd
  • John Alvarez
  • Yuval Eshed
  • Nathaniel P. Hawker
  • Anat Izhaki
  • Stuart F. Baum
  • John L. Bowman
چکیده

BACKGROUND Shoots of all land plants have a radial pattern that can be considered to have an adaxial (central)-abaxial (peripheral) polarity. In Arabidopsis, gain-of-function alleles of PHAVOLUTA and PHABULOSA, members of the class III HD-ZIP gene family, result in adaxialization of lateral organs. Conversely, loss-of-function alleles of the KANADI genes cause an adaxialization of lateral organs. Thus, the class III HD-ZIP and KANADI genes comprise a genetic system that patterns abaxial-adaxial polarity in lateral organs produced from the apical meristem. RESULTS We show that gain-of-function alleles of REVOLUTA, another member of the class III HD-ZIP gene family, are characterized by adaxialized lateral organs and alterations in the radial patterning of vascular bundles in the stem. The gain-of-function phenotype can be obtained by changing only the REVOLUTA mRNA sequence and without changing the protein sequence; this finding indicates that this phenotype is likely mediated through an interference with microRNA binding. Loss of KANADI activity results in similar alterations in vascular patterning as compared to REVOLUTA gain-of-function alleles. Simultaneous loss-of-function of PHABULOSA, PHAVOLUTA, and REVOLUTA abaxializes cotyledons, abolishes the formation of the primary apical meristem, and in severe cases, eliminates bilateral symmetry; these phenotypes implicate these three genes in radial patterning of both embryonic and postembryonic growth. CONCLUSIONS Based on complementary vascular and leaf phenotypes of class III HD-ZIP and KANADI mutants, we propose that a common genetic program dependent upon miRNAs governs adaxial-abaxial patterning of leaves and radial patterning of stems in the angiosperm shoot. This finding implies that a common patterning mechanism is shared between apical and vascular meristems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis.

Embryo patterning in Arabidopsis thaliana is highly affected when KANADI or Class III HD-Zip genes are compromised. Triple loss-of-function kan1 kan2 kan4 embryos exhibit striking defects in the peripheral-central axis, developing lateral leaf-like organs from the hypocotyls, whereas loss of Class III HD-Zip gene activity results in a loss of bilateral symmetry. Loss of KANADI activity in a Cla...

متن کامل

Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development.

Meristems within the plant body differ in their structure and the patterns and identities of organs they produce. Despite these differences, it is becoming apparent that shoot and root apical and vascular meristems share significant gene expression patterns. Class III HD-Zip genes are required for the formation of a functional shoot apical meristem. In addition, Class III HD-Zip and KANADI gene...

متن کامل

Alteration of the shoot radial pattern in Arabidopsis thaliana by a gain-of-function allele of the class III HD-Zip gene INCURVATA4.

Class III HD-Zip (HD-Zip III) family genes play key roles in a number of fundamental developmental programs in Arabidopsis thaliana, such as embryo patterning, meristem initiation and homeostasis, lateral organ polarity and vascular development. Semidominant gain-of-function alleles of the HD-Zip III genes PHABULOSA (PHB), PHAVOLUTA (PHV) and REVOLUTA (REV) disrupt the negative regulation of th...

متن کامل

Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation.

Class III HD-ZIP and KANADI gene family members have complementary expression patterns in the vasculature and their gain-of-function and loss-of-function mutants have complementary vascular phenotypes. This suggests that members of the two gene families are involved in the establishment of the spatial arrangement of phloem, cambium and xylem. In this study, we have investigated the role of thes...

متن کامل

Evolution of class III homeodomain-leucine zipper genes in streptophytes.

Land plants underwent tremendous evolutionary change following the divergence of the ancestral lineage from algal relatives. Several important developmental innovations appeared as the embryophyte clade diversified, leading to the appearance of new organs and tissue types. To understand how these changes came about, we need to identify the fundamental genetic developmental programs that are res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003