A stochastic approach to the solution of magnetohydrodynamic equations
نویسندگان
چکیده
The construction of stochastic solutions is a powerful method to obtain localized solutions in configuration or Fourier space and for parallel computation with domain decomposition. Here a stochastic solution is obtained for the magnetohydrodynamics equations. Some details are given concerning the numerical implementation of the solution which is illustrated by an example of generation of long-range magnetic fields by a velocity source.
منابع مشابه
Global Strong Solution to the Three-dimensional Stochastic Incompressible Magnetohydrodynamic Equations
The three-dimensional incompressible magnetohydrodynamic equations with stochastic external forces are considered. First, the existence and uniqueness of local strong solution to the stochastic magnetohydrodynamic equations are proved when the external forces satisfy some conditions. The proof is based on the contraction mapping principle, stopping time and stochastic estimates. The strong solu...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملApproximate solution of the stochastic Volterra integral equations via expansion method
In this paper, we present an efficient method for determining the solution of the stochastic second kind Volterra integral equations (SVIE) by using the Taylor expansion method. This method transforms the SVIE to a linear stochastic ordinary differential equation which needs specified boundary conditions. For determining boundary conditions, we use the integration technique. This technique give...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 242 شماره
صفحات -
تاریخ انتشار 2013