A Local Version of Szpiro's Conjecture

نویسندگان

  • Michael A. Bennett
  • Soroosh Yazdani
چکیده

Szpiro’s Conjecture asserts the existence of an absolute constant K > 6 such that if E is an elliptic curve over Q, the minimal discriminant ∆(E) of E is bounded above in modulus by the K-th power of the conductor N(E) of E. An immediate consequence of this is the existence of an absolute upper bound upon min {vp(∆(E)) : p | ∆(E)}. In this paper, we will prove this local version of Szpiro’s Conjecture under the (admittedly strong) additional hypotheses that N(E) is divisible by a “large” prime p, and that E possesses a nontrivial rational isogeny. We will also formulate a related conjecture which, if true, we prove to be sharp. Our construction of families of curves for which min {vp(∆(E)) : p | ∆(E)} ≥ 6 provides an alternative proof of a result of Masser on the sharpness of Szpiro’s conjecture. We close the paper by reporting on recent computations of examples of curves with large Szpiro ratio.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures

Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...

متن کامل

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.

متن کامل

ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION R⊂R[X]

Let R be a commutative Noetherian ring, I an ideal of R and M a non-zero R-module. In this paper we calculate the extension of annihilator of local cohomology modules H^t_I(M), t≥0, under the ring extension R⊂R[X] (resp. R⊂R[[X]]). By using this extension we will present some of the faithfulness conditions of local cohomology modules, and show that if the Lynch's conjecture, i...

متن کامل

Local Gersten’s conjecture for regular system of parameters

The previous works in [HM09], we turn out that Gersten’s conjecture is equivalent to its local version. To state local Gersten’s conjecture, we start from recalling the notation from [HM09], [MS10]. In this paper, let us fix a commutative regular local ring A of Krull dimension d. For any ideal of A generated by a regular sequence I, we denote the category of finitely generated A-modules M whos...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental Mathematics

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2012