Specific features of neuronal size and shape are regulated by tropomyosin isoforms.
نویسندگان
چکیده
Spatially distinct populations of microfilaments, characterized by different tropomyosin (Tm) isoforms, are present within a neuron. To investigate the impact of altered tropomyosin isoform expression on neuronal morphogenesis, embryonic cortical neurons from transgenic mice expressing the isoforms Tm3 and Tm5NM1, under the control of the beta-actin promoter, were cultured in vitro. Exogenously expressed Tm isoforms sorted to different subcellular compartments with Tm5NM1 enriched in filopodia and growth cones, whereas the Tm3 was more broadly localized. The Tm5NM1 neurons displayed significantly enlarged growth cones accompanied by an increase in the number of dendrites and axonal branching. In contrast, Tm3 neurons displayed inhibition of neurite outgrowth. Recruitment of Tm5a and myosin IIB was observed in the peripheral region of a significant number of Tm5NM1 growth cones. We propose that enrichment of myosin IIB increases filament stability, leading to the enlarged growth cones. Our observations support a role for different tropomyosin isoforms in regulating interactions with myosin and thereby regulating morphology in specific intracellular compartments.
منابع مشابه
Tropomyosin isoform diversity and neuronal morphogenesis.
Tropomyosins (Tm) are a large family of isoforms obtained from multiple genes and by extensive alternative splicing. They bind in the alpha-helical groove of the actin filament and are therefore core components of this extensive cytoskeletal system. In non-muscle cells the Tm isoforms have been implicated in a diversity of processes including cytokinesis, vesicle transport, motility, morphogene...
متن کاملActin filament-stabilizing protein tropomyosin regulates the size of dendritic fields.
Dendritic arbors of different neuronal subtypes cover distinct spatial territories, known as dendritic fields, to receive specific inputs in a nervous system. How the size of dendritic fields is determined by cell-intrinsic factors during development remains primarily unknown. To address this issue, we used the Drosophila embryonic peripheral nervous system. In each hemisegment, six dorsal clus...
متن کاملThe roles of microfilament-associated proteins, drebrins, in brain morphogenesis: a review.
The cytoskeleton has been suggested to be one of the important endogenous factors that control neuronal morphogenesis. Analysis of the developmental changes in the protein composition of the brain led to the discovery of novel developmentally regulated actin-binding proteins, drebrins. Drebrins exhibit a number of characteristics that one might expect for an intracellular regulator of neuronal ...
متن کاملMutations changing tropomodulin affinity for tropomyosin alter neurite formation and extension
Assembly of the actin cytoskeleton is an important part of formation of neurites in developing neurons. Tropomodulin, a tropomyosin-dependent capping protein for the pointed end of the actin filament, is one of the key players in this process. Tropomodulin binds tropomyosin in two binding sites. Tmod1 and Tmod2, tropomodulin isoforms found in neurons, were overexpressed in PC12 cells, a model s...
متن کاملPurification of tropomyosin Br-3 and 5NM1 and characterization of their interactions with actin.
Tropomyosins were first identified in neuronal systems in 1973. Although numerous isoforms were found and described since then, many aspects of their function and interactions remained unknown. Tropomyosin isoforms show different sorting pattern in neurogenesis. As one example, TM5NM1/2 is present in developing axons, but it is replaced by TMBr-3 in mature neurons, suggesting that these tropomy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 16 7 شماره
صفحات -
تاریخ انتشار 2005