Observation of Dirac-like semi-metallic phase in NdSb.

نویسندگان

  • Madhab Neupane
  • M Mofazzel Hosen
  • Ilya Belopolski
  • Nicholas Wakeham
  • Klauss Dimitri
  • Nagendra Dhakal
  • Jian-Xin Zhu
  • M Zahid Hasan
  • Eric D Bauer
  • Filip Ronning
چکیده

The search of new topological phases of matter is one of the new directions in condensed matter physics. Recent experimental realizations of Dirac semimetal phases pave the way to look for other exotic phases of matter in real materials. Here we present a systematic angle-resolved photoemission spectroscopy (ARPES) study of NdSb, a potential candidate for hosting a Dirac semi-metal phase. Our studies reveal two hole-like Fermi surface pockets present at the zone center ([Formula: see text]) point as well as two elliptical electron-pockets present in the zone corner (X) point of the Brillouin zone (BZ). Interestingly, Dirac-like linearly dispersive states are observed about the zone corner (X) point in NdSb. Our first-principles calculations agree with the experimentally observed bands at the [Formula: see text] point. Moreover, the Dirac-like state observed in NdSb may be a novel correlated state, not yet predicted in calculations. Our study opens a new direction to look for Dirac semi-metal states in other members of the rare earth monopnictide family.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical quantum current modeling in GNSFET

Carbon nanoscrolls (CNSs) belong to the same class of carbon-based nanomaterialsas carbon nanotubes. As a new category of quasi one dimensional material Graphene Nanoscroll (GNS) has captivated the researchers recently because of its exceptional electronic properties like having large carrier mobility. GNS shape has open edges and no caps unlike Single Wall Nanotubes (SWNTs) which are wou...

متن کامل

Dirac Fermions on a Two-Dimensional Lattice and the Intermediate Metallic Phase

Consequences of different discretizations of the two-dimensional Dirac operator on low energy properties (e.g., the number of nodes) and their relations to gauge properties are discussed. Breaking of the gauge invariance was suggested in a recent work by M. Bocquet, D. Serban, and M.R. Zirnbauer [cond-mat/9910480] in order to destroy an intermediate metallic phase of lattice Dirac fermions with...

متن کامل

Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.

We consider a two-dimensional honeycomb lattice of metallic nanoparticles, each supporting a localized surface plasmon, and study the quantum properties of the collective plasmons resulting from the near-field dipolar interaction between the nanoparticles. We analytically investigate the dispersion, the effective Hamiltonian, and the eigenstates of the collective plasmons for an arbitrary orien...

متن کامل

خواص ترابرد الکترونی نانولوله کربنی فلز - نیمرسانا - فلز

 In this work, we study electronic transport properties of a quasi-one dimensional pure semi-conducting Zigzag Carbon Nanotube (CNT) attached to semi-infinite clean metallic Zigzag CNT leads, taking into account the influence of topological defect in junctions. This structure may behave like a field effect transistor. The calculations are based on the tight-binding model and Green’s function me...

متن کامل

Topological insulator behavior of WS2 monolayer with square-octagon ring structure

We report electronic behavior of an allotrope of monolayer WS2 with a square octagon ring structure, refereed to as (so-WS2) within state-of-the-art density functional theory (DFT) calculations. TheWS2 monolayer shows semi-metallic characteristics with Dirac-cone like features around Г. Unlike p-orbital’s Dirac-cone in graphene, the Dirac-cone in the so-WS2 monolayer originates from the d-elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 28 23  شماره 

صفحات  -

تاریخ انتشار 2016