Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems
نویسندگان
چکیده
Methods which do not use any derivative information are becoming popular among researchers, since they allow to solve many real-world engineering problems. Such problems are frequently characterized by the presence of discrete variables, which can further complicate the optimization process. In this paper, we propose derivative-free algorithms for solving continuously differentiable Mixed Integer NonLinearProgrammingproblemswith general nonlinear constraints and explicit handling of bound constraints on the problem variables. We use an exterior penalty approach to handle the general nonlinear constraints and a local search approach to take into account the presence of discrete variables. We show that the proposed algorithms globally converge to points satisfying different necessary optimality conditions. We report a computational experience and a comparisonwith awell-known derivative-free optimization software package, i.e., NOMAD, on a set of test problems. Furthermore, we employ the proposed methods and NOMAD to solve a real problem concerning the optimal design of an industrial electric motor. This allows to show that the method converging to the better extended stationary points obtains the best solution also from an applicative point of view. G. Liuzzi (B) Istituto di Analisi dei Sistemi ed Informatica (IASI) “A.Ruberti”, CNR, Viale Manzoni 30, 00185 Rome, Italy e-mail: [email protected] S. Lucidi Dipartimento di Informatica e Sistemistica “A. Ruberti”, “Sapienza” Università di Roma, Via Ariosto 25, 00185 Rome, Italy e-mail: [email protected] F. Rinaldi Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padua, Italy e-mail: [email protected]
منابع مشابه
General Solution Methods for Mixed Integer Quadratic Programming and Derivative Free Mixed Integer Non-Linear Programming Problems
In a number of situations the derivative of the objective function of an optimization problem is not available. This thesis presents a novel algorithm for solving mixed integer programs when this is the case. The algorithm is the first developed for problems of this type which uses a trust region methodology. Three implementations of the algorithm are developed and deterministic proofs of conve...
متن کاملDerivative-free methods for bound constrained mixed-integer optimization
We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems arises frequ...
متن کاملMILP models for the selection of a small set of well-distributed points
Motivated by the problem of fitting a surrogate model to a set of feasible points in the context of constrained derivative-free optimization, we consider the problem of selecting a small set of points with good space-filling and orthogonality properties from a larger set of feasible points. We propose four mixed-integer linear programming models for this task and we show that the corresponding ...
متن کاملMixed-Integer Constrained Optimization Based on Memetic Algorithm
Evolutionary algorithms (EAs) are population-based global search methods. They have been successfully applied to many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in default of local search mechanisms. Memetic Algorithms (MAs) are hybrid EAs that combine genetic operators with local search methods. With global exploration and local explo...
متن کاملNumerical experience with a derivative-free trust-funnel method for nonlinear optimization problems with general nonlinear constraints
A trust-funnel method is proposed for solving nonlinear optimization problems with general nonlinear constraints. It extends the one presented by Gould and Toint (Math. Prog., 122(1):155196, 2010), originally proposed for equality-constrained optimization problems only, to problems with both equality and inequality constraints and where simple bounds are also considered. As the original one, ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Optimization Theory and Applications
دوره 164 شماره
صفحات -
تاریخ انتشار 2015