Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants.

نویسندگان

  • R X Fang
  • F Nagy
  • S Sivasubramaniam
  • N H Chua
چکیده

The 35S promoter is a major promoter of the cauliflower mosaic virus that infects crucifers. This promoter is still active when excised from cauliflower mosaic virus and integrated into the nuclear genome of transgenic tobacco. Previous work has shown that the -343 to -46 upstream fragment is responsible for the majority of the 35S promoter strength (Odell, J.T., Nagy, F., and Chua, N.-H. [1985]. Nature 313, 810-812). Here we show by 5', 3', and internal deletions that this upstream fragment can be subdivided into three functional regions, -343 to -208, -208 to -90, and -90 to -46. The first two regions can potentiate transcriptional activity when tested with the appropriate 35S promoter sequence. In contrast, the -90 to -46 region by itself has little activity but it plays an accessory role by increasing transcriptional activity of the two distal regions. Finally, we show that monomers and multimers of a 35S fragment (-209 to -46) can act as enhancers to potentiate transcription from a heterologous promoter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants.

Appropriate regulation of transcription in higher plants requires specific cis elements in the regulatory regions of genes and their corresponding trans-acting proteins. Analysis of the cauliflower mosaic virus (CaMV) 35S promoter has contributed to the understanding of transcriptional regulatory mechanisms. The intact 35S promoter confers constitutive expression upon heterologous genes in most...

متن کامل

A dominant negative mutant of PG13 suppresses transcription from a cauliflower mosaic virus 35S truncated promoter in transgenic tobacco plants.

TGA1a and PG13 constitute a family of tobacco basic leucine zipper (bZIP) proteins that bind to activating sequence-1 (as-1), which is one of the multiple regulatory cis elements of the cauliflower mosaic virus (CaMV) 35S promoter. After truncation of the CaMV 35S promoter down to position -90 (CaMV 35S [-90] promoter), transcription stringently depends on the presence of as-1, which is recogni...

متن کامل

Pathogen Phytosensing: Plants to Report Plant Pathogens

Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-s...

متن کامل

Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.)

A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in...

متن کامل

Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor.

AtWRKY18 is a pathogen- and salicylic acid-induced Arabidopsis transcription factor containing the plant-specific WRKY zinc finger DNA-binding motif. In the present study, we have transformed Arabidopsis plants with AtWRKY18 under control of the cauliflower mosaic virus 35S promoter. Surprisingly, transgenic plants expressing high levels of AtWRKY18 were stunted in growth. When expressed at mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 1989