Moving boundary approximation for curved streamer ionization fronts: solvability analysis.
نویسندگان
چکیده
The minimal density model for negative streamer ionization fronts is investigated. An earlier moving boundary approximation for this model consisted of a "kinetic undercooling" type boundary condition in a Laplacian growth problem of Hele-Shaw type. Here we derive a curvature correction to the moving boundary approximation that resembles surface tension. The calculation is based on solvability analysis with unconventional features, namely, there are three relevant zero modes of the adjoint operator, one of them diverging; furthermore, the inner-outer matching ahead of the front must be performed on a line rather than on an extended region; and the whole calculation can be performed analytically. The analysis reveals a relation between the fields ahead and behind a slowly evolving curved front, the curvature and the generated conductivity. This relation forces us to give up the ideal conductivity approximation, and we suggest to replace it by a charge neutrality approximation. This implies that the electric potential in the streamer interior is no longer constant but solves a Laplace equation; this leads to a Muskat-type problem.
منابع مشابه
Moving-boundary approximation for curved streamer ionization fronts: numerical tests.
Recently a moving boundary approximation for the minimal model for negative streamer ionization fronts was extended with effects due to front curvature; this was done through a systematic solvability analysis. A central prediction of this analysis is the existence of a nonvanishing electric field in the streamer interior, whose value is proportional to the front curvature. In this paper we comp...
متن کاملConstruction and test of a moving boundary model for negative streamer discharges.
Starting from the minimal model for the electrically interacting densities of electrons and ions in negative streamer discharges, we derive a moving boundary approximation for the ionization fronts. Solutions of the moving boundary model have already been discussed, but the derivation of the model was postponed to the present paper. The key ingredient of the model is the boundary condition on t...
متن کاملPropagation and structure of planar streamer fronts
Streamers are a mode of dielectric breakdown of a gas in a strong electric field: A sharp nonlinear ionization wave propagates into a nonionized gas, leaving a nonequilibrium plasma behind. The ionization avalanche in the tip of the wave is due to free electrons being accelerated in the strong field and ionizing the gas by impact. This chain reaction deeper in the wave is suppressed by the gene...
متن کاملBreakdown of the standard perturbation theory and moving boundary approximation for pulled’’ fronts
The derivation of a Moving Boundary Approximation or of the response of a coherent structure like a front, vortex or pulse to external forces and noise, is generally valid under two conditions: the existence of a separation of time scales of the dynamics on the inner and outer scale and the existence and convergence of solvability type integrals. We point out that these conditions are not satis...
متن کاملRegularization of moving boundaries in a laplacian field by a mixed Dirichlet-Neumann boundary condition: exact results.
The dynamics of ionization fronts that generate a conducting body are in the simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 78 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2008