Markov Networks for Detecting Overalpping Elements in Sequence Data
نویسندگان
چکیده
Many sequential prediction tasks involve locating instances of patterns in sequences. Generative probabilistic language models, such as hidden Markov models (HMMs), have been successfully applied to many of these tasks. A limitation of these models however, is that they cannot naturally handle cases in which pattern instances overlap in arbitrary ways. We present an alternative approach, based on conditional Markov networks, that can naturally represent arbitrarily overlapping elements. We show how to efficiently train and perform inference with these models. Experimental results from a genomics domain show that our models are more accurate at locating instances of overlapping patterns than are baseline models based on HMMs.
منابع مشابه
Markov Networks for Detecting Overlapping Elements in Sequence Data
Many sequential prediction tasks involve locating instances of patterns in sequences. Generative probabilistic language models, such as hidden Markov models (HMMs), have been successfully applied to many of these tasks. A limitation of these models however, is that they cannot naturally handle cases in which pattern instances overlap in arbitrary ways. We present an alternative approach, based ...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملA New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines
Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...
متن کاملDetecting Bot Networks Based On HTTP And TLS Traffic Analysis
Abstract— Bot networks are a serious threat to cyber security, whose destructive behavior affects network performance directly. Detecting of infected HTTP communications is a big challenge because infected HTTP connections are clearly merged with other types of HTTP traffic. Cybercriminals prefer to use the web as a communication environment to launch application layer attacks and secretly enga...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004