A stochastic nature inspired metaheuristic for clustering analysis

نویسندگان

  • Yannis Marinakis
  • Magdalene Marinaki
  • Nikolaos F. Matsatsinis
چکیده

This paper presents a new stochastic nature inspired methodology, which is based on the concepts of Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), for optimally clustering N objects into K clusters. Due to the nature of stochastic and population-based search, the proposed algorithm can overcome the drawbacks of traditional clustering methods. Its performance is compared with other popular stochastic/metaheuristic methods like genetic algorithm and Tabu search. The proposed algorithm has been implemented and tested on several datasets with very good results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Clustering Using Metaheuristic Optimization Algorithms

Gene clustering is a familiar step in the exploratory analysis of high dimensional biological data. It is the process of grouping genes of similar patterns in the same cluster and aims at analyzing the functions of gene that leads to the development of drugs and early diagnosis of diseases. In the recent years, much research has been proposed using nature inspired meta-heuristic algorithms. Cuc...

متن کامل

A Hybrid Clustering Algorithm Based on Honey Bees Mating Optimization and Greedy Randomized Adaptive Search Procedure

This paper introduces a new hybrid algorithmic nature inspired approach based on the concepts of the Honey Bees Mating Optimization Algorithm (HBMO) and of the Greedy Randomized Adaptive Search Procedure (GRASP), for optimally clustering N objects into K clusters. The proposed algorithm for the Clustering Analysis, the Hybrid HBMO-GRASP, is a two phase algorithm which combines a HBMO algorithm ...

متن کامل

Whale Swarm Algorithm for Function Optimization

Increasing nature-inspired metaheuristic algorithms are applied to solving the real-world optimization problems, as they have some advantages over the classical methods of numerical optimization. This paper has proposed a new nature-inspired metaheuristic called Whale Swarm Algorithm for function optimization, which is inspired by the whales’ behavior of communicating with each other via ultras...

متن کامل

Optimal Localization of Shopping Centers Using Metaheuristic Genetic Algorithm

Efficiency and effectiveness is of importance for selection and localization. There should be regular methodology for targeting in the market by several methods. There is a necessity to have clear study for selection. In the current research, it has been studied the optimal localization at shopping centers. If there is not accuracy and validity, there will be achieved negative results for these...

متن کامل

Investigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks

Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJBIDM

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008