Selectively-informed particle swarm optimization
نویسندگان
چکیده
Particle swarm optimization (PSO) is a nature-inspired algorithm that has shown outstanding performance in solving many realistic problems. In the original PSO and most of its variants all particles are treated equally, overlooking the impact of structural heterogeneity on individual behavior. Here we employ complex networks to represent the population structure of swarms and propose a selectively-informed PSO (SIPSO), in which the particles choose different learning strategies based on their connections: a densely-connected hub particle gets full information from all of its neighbors while a non-hub particle with few connections can only follow a single yet best-performed neighbor. Extensive numerical experiments on widely-used benchmark functions show that our SIPSO algorithm remarkably outperforms the PSO and its existing variants in success rate, solution quality, and convergence speed. We also explore the evolution process from a microscopic point of view, leading to the discovery of different roles that the particles play in optimization. The hub particles guide the optimization process towards correct directions while the non-hub particles maintain the necessary population diversity, resulting in the optimum overall performance of SIPSO. These findings deepen our understanding of swarm intelligence and may shed light on the underlying mechanism of information exchange in natural swarm and flocking behaviors.
منابع مشابه
A particle swarm optimization method for periodic vehicle routing problem with pickup and delivery in transportation
In this article, multiple-product PVRP with pickup and delivery that is used widely in goods distribution or other service companies, especially by railways, was introduced. A mathematical formulation was provided for this problem. Each product had a set of vehicles which could carry the product and pickup and delivery could simultaneously occur. To solve the problem, two meta-heuristic methods...
متن کاملNeural network river forecasting with multi-objective fully informed particle swarm optimization
In this work, we suggest that the poorer results obtained with particle swarm optimization (PSO) in some previous studies should be attributed to the cross-validation scheme commonly employed to improve generalization of PSO-trained neural network river forecasting (NNRF) models. Crossvalidation entails splitting the training dataset into two, and accepting particle position updates only if fit...
متن کاملNeighborhood Re-structuring in Particle Swarm Optimization
This paper considers the use of randomly generated directed graphs as neighborhoods for particle swarm optimizers (PSO) using fully informed particles (FIPS), together with dynamic changes to the graph during an algorithm run as a diversity-preserving measure. Different graph sizes, constructed with a uniform out-degree were studied with regard to their effect on the performance of the PSO on o...
متن کاملAn Improved Particle Swarm Optimization for Traveling Salesman Problem
To compensate for the shortcomings of existing methods used in TSP (Traveling Salesman Problem), such as the accuracy of solutions and the scale of problems, this paper proposed an improved particle swarm optimization by using a self-organizing construction mechanism and dynamic programming algorithm. Particles are connected in way of scale-free fully informed network topology map. Then dynamic...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015