Fe b 20 09 ON TOTALLY REAL HILBERT - SPEISER FIELDS OF TYPE C

نویسنده

  • HENRI JOHNSTON
چکیده

Let G be a finite abelian group. A number field K is called a Hilbert-Speiser field of type G if every tame G-Galois extension L/K has a normal integral basis, i.e., the ring of integers OL is free as an OKG-module. Let Cp denote the cyclic group of prime order p. We show that if p ≥ 7 (or p = 5 and extra conditions are met) and K is totally real with K/Q ramified at p, then K is not Hilbert-Speiser of type Cp.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Totally Real Hilbert - Speiser Fields of Type

Let G be a finite abelian group. A number field K is called a Hilbert-Speiser field of type G if for every tame G-Galois extension L/K has a normal integral basis, i.e., the ring of integers OL is free as an OKG-module. Let Cp denote the cyclic group of prime order p. We show that if p ≥ 7 (or p = 5 and extra conditions are met) and K is totally real with K/Q ramified at p, then K is not Hilber...

متن کامل

On the Equivalence of the Restricted Hilbert-speiser and Leopoldt Properties

Let G be a finite abelian group. A number field K is called a Hilbert-Speiser field of type G if for every tame G-Galois extension L/K, the ring of integers OL is free as an OKG-module. If OL is free over the associated order AL/K for every G-Galois extension L/K, then K is called a Leopoldt field of type G. It is well-known (and easy to see) that if K is Leopoldt of type G, then K is Hilbert-S...

متن کامل

On Hilbert Golab-Schinzel type functional equation

Let $X$ be a vector space over a field $K$ of real or complex numbers. We will prove the superstability of the following Go{l}c{a}b-Schinzel type equation$$f(x+g(x)y)=f(x)f(y), x,yin X,$$where $f,g:Xrightarrow K$ are unknown functions (satisfying some assumptions). Then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitr...

متن کامل

Fe b 20 09 MODULE WEAK BANACH - SAKS AND MODULE SCHUR PROPERTIES OF HILBERT C ∗ - MODULES

Continuing the research on the Banach-Saks and Schur properties started in (cf. [10]) we investigate analogous properties in the module context. As an environment serves the class of Hilbert C∗-modules. Some properties of weak module topologies on Hilbert C∗-modules are described. Natural module analogues of the classical weak Banach-Saks and the classical Schur properties are defined and studi...

متن کامل

On a functional equation for symmetric linear operators on $C^{*}$ algebras

‎Let $A$ be a $C^{*}$ algebra‎, ‎$T‎: ‎Arightarrow A$ be a linear map which satisfies the functional equation $T(x)T(y)=T^{2}(xy),;;T(x^{*})=T(x)^{*} $‎. ‎We prove that under each of the following conditions‎, ‎$T$ must be the trivial map $T(x)=lambda x$ for some $lambda in mathbb{R}$: ‎‎ ‎i) $A$ is a simple $C^{*}$-algebra‎. ‎ii) $A$ is unital with trivial center and has a faithful trace such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009