Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites
نویسندگان
چکیده
Metal-halide perovskites are at the frontier of optoelectronic research due to solution processability and excellent semiconductor properties. Here we use transient absorption spectroscopy to study hot-carrier distributions in CH3NH3PbI3 and quantify key semiconductor parameters. Above bandgap, non-resonant excitation creates quasi-thermalized carrier distributions within 100 fs. During carrier cooling, a sub-bandgap transient absorption signal arises at ∼ 1.6 eV, which is explained by the interplay of bandgap renormalization and hot-carrier distributions. At higher excitation densities, a 'phonon bottleneck' substantially slows carrier cooling. This effect indicates a low contribution from inelastic carrier-impurity or phonon-impurity scattering in these polycrystalline materials, which supports high charge-carrier mobilities. Photoinduced reflectivity changes distort the shape of transient absorption spectra and must be included to extract physical constants. Using a simple band-filling model that accounts for these changes, we determine a small effective mass of mr=0.14 mo, which agrees with band structure calculations and high photovoltaic performance.
منابع مشابه
Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites
The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA+/MA+/Cs+, X=I-/Br-) are compared in this study to reveal the carrier-phonon dynamic...
متن کاملEnvironmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites
The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key element...
متن کاملFree Carrier Emergence and Onset of Electron-Phonon Coupling in Methylammonium Lead Halide Perovskite Films.
Sub-10 fs resolution pump-probe experiments on methylammonium lead halide perovskite films are described. Initial response to photoexcitation is assigned to localized hot excitons which dissociate to free carriers. This is attested to by band integrals of the pump-probe spectra where photoinduced bleaching rises abruptly 20 fs after photoexcitation. Later stages of spectral evolution are consis...
متن کاملLead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation
Lead halide perovskites have been demonstrated as high performance materials in solar cells and light-emitting devices. These materials are characterized by coherent band transport expected from crystalline semiconductors, but dielectric responses and phonon dynamics typical of liquids. This "crystal-liquid" duality implies that lead halide perovskites belong to phonon glass electron crystals, ...
متن کاملScreening in crystalline liquids protects energetic carriers in hybrid perovskites.
Hybrid lead halide perovskites exhibit carrier properties that resemble those of pristine nonpolar semiconductors despite static and dynamic disorder, but how carriers are protected from efficient scattering with charged defects and optical phonons is unknown. Here, we reveal the carrier protection mechanism by comparing three single-crystal lead bromide perovskites: CH3NH3PbBr3, CH(NH2)2PbBr3,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015