Learning a Hierarchical Belief Network of Independent Factor Analyzers
نویسنده
چکیده
Many belief networks have been proposed that are composed of binary units. However, for tasks such as object and speech recognition which produce real-valued data, binary network models are usually inadequate. Independent component analysis (ICA) learns a model from real data, but the descriptive power of this model is severly limited. We begin by describing the independent factor analysis (IFA) technique, which overcomes some of the limitations of ICA. We then create a multilayer network by cascading singlelayer IFA models. At each level, the IFA network extracts realvalued latent variables that are non-linear functions of the input data with a highly adaptive functional form, resulting in a hierarchical distributed representation of these data. Whereas exact maximum-likelihood learning of the network is intractable, we derive an algorithm that maximizes a lower bound on the likelihood, based on a variational approach.
منابع مشابه
نقش باورهای مرتبط با درد در سازگاری با بیماری سرطان
Although evidence from chronic non-cancer pain population supports the role of pain-related beliefs in patients’ adjustment to chronic pain, little has been known about the impact of pain-related beliefs in the adjustment to cancer pain. This study examined the factor structure, reliability and validity of the Pain Beliefs and Perception Inventory among a sample of 232 cancer patients undergoi...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملLearning in Compositional Hierarchies: Inducing the Structure of Objects from Data
I propose a learning algorithm for learning hierarchical models for object recognition. The model architecture is a compositional hierarchy that represents part-whole relationships: parts are described in the local context of substructures of the object. The focus of this report is learning hierarchical models from data, i.e. inducing the structure of model prototypes from observed exemplars of...
متن کاملDeep belief echo-state network and its application to time series prediction
Deep belief network (DBN) has attracted many attentions in time series prediction. However, the DBNbased methods fail to provide favorable prediction results due to the congenital defects of the backpropagation method, such as slow convergence and local optimum. To address the problems, we propose a deep belief echo-state network (DBEN) for time series prediction. In the new architecture, DBN i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998