Learning a Hierarchical Belief Network of Independent Factor Analyzers

نویسنده

  • Hagai Attias
چکیده

Many belief networks have been proposed that are composed of binary units. However, for tasks such as object and speech recognition which produce real-valued data, binary network models are usually inadequate. Independent component analysis (ICA) learns a model from real data, but the descriptive power of this model is severly limited. We begin by describing the independent factor analysis (IFA) technique, which overcomes some of the limitations of ICA. We then create a multilayer network by cascading singlelayer IFA models. At each level, the IFA network extracts realvalued latent variables that are non-linear functions of the input data with a highly adaptive functional form, resulting in a hierarchical distributed representation of these data. Whereas exact maximum-likelihood learning of the network is intractable, we derive an algorithm that maximizes a lower bound on the likelihood, based on a variational approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نقش باورهای مرتبط با درد در سازگاری با بیماری سرطان

 Although evidence from chronic non-cancer pain population supports the role of pain-related beliefs in patients’ adjustment to chronic pain, little has been known about the impact of pain-related beliefs in the adjustment to cancer pain. This study examined the factor structure, reliability and validity of the Pain Beliefs and Perception Inventory among a sample of 232 cancer patients undergoi...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

Learning in Compositional Hierarchies: Inducing the Structure of Objects from Data

I propose a learning algorithm for learning hierarchical models for object recognition. The model architecture is a compositional hierarchy that represents part-whole relationships: parts are described in the local context of substructures of the object. The focus of this report is learning hierarchical models from data, i.e. inducing the structure of model prototypes from observed exemplars of...

متن کامل

Deep belief echo-state network and its application to time series prediction

Deep belief network (DBN) has attracted many attentions in time series prediction. However, the DBNbased methods fail to provide favorable prediction results due to the congenital defects of the backpropagation method, such as slow convergence and local optimum. To address the problems, we propose a deep belief echo-state network (DBEN) for time series prediction. In the new architecture, DBN i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998