Chain enumeration of k-divisible noncrossing partitions of classical types

نویسنده

  • Jang Soo Kim
چکیده

We give combinatorial proofs of the formulas for the number of multichains in the k-divisible noncrossing partitions of classical types with certain conditions on the rank and the block size due to Krattenthaler and Müller. We also prove Armstrong’s conjecture on the zeta polynomial of the poset of k-divisible noncrossing partitions of type A invariant under the 180◦ rotation in the cyclic representation. Résumé. Nous donnons une preuve combinatoire de la formule pour le nombre de multichaı̂nes dans les partitions k-divisibles non-croisées de type classique avec certaines conditions sur le rang et la taille du bloc due à Krattenthaler et Müller. Nous prouvons aussi la conjecture d’Amstrong sur le polynôme zeta du poset des partitions k-divisibles non-croisées de type A invariantes par la rotation de 180◦ dans la représentation cyclique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON 2-REGULAR, k-NONCROSSING PARTITIONS

In this paper we prove a bijection between 2-regular, k-noncrossing partitions and k-noncrossing enhanced partitions. Via this bijection we enumerate 2-regular, 3-noncrossing partitions using an enumeration result [1] for enhanced 3-noncrossing partitions. In addition we derive the asymptotics for the numbers of 2-regular, 3-noncrossing partitions using the BirkhoffTrijtzinky analytic theory of...

متن کامل

Enumeration of bilaterally symmetric 3-noncrossing partitions

Schützenberger’s theorem for the ordinary RSK correspondence naturally extends to Chen et. al’s correspondence for matchings and partitions. Thus the counting of bilaterally symmetric k-noncrossing partitions naturally arises as an analogue for involutions. In obtaining the analogous result for 3-noncrossing partitions, we use a different technique to develop a MAPLE package for 2-dimensional v...

متن کامل

Nonhomogeneous Parking Functions and Noncrossing Partitions

For each skew shape we define a nonhomogeneous symmetric function, generalizing a construction of Pak and Postnikov [9]. In two special cases, we show that the coefficients of this function when expanded in the complete homogeneous basis are given in terms of the (reduced) type of k-divisible noncrossing partitions. Our work extends Haiman’s notion of a parking function symmetric function [5, 10].

متن کامل

EL-Shellability of Generalized Noncrossing Partitions Associated to Well-Generated Complex Reflection Groups

In this article we prove that the poset of m-divisible noncrossing partitions is EL-shellable for every wellgenerated complex reflection group. This was an open problem for type G(d, d, n) and for the exceptional types, for which a proof is given case-by-case. Résumé. Dans cet article nous prouvons que l’ensemble ordonné des partitions non-croisées m-divisibles est ELépluchable (“EL-shellable”)...

متن کامل

Reduction of m-regular noncrossing partitions

In this paper, we present a reduction algorithm which transforms m-regular partitions of [n] = {1, 2, . . . , n} to (m−1)-regular partitions of [n − 1]. We show that this algorithm preserves the noncrossing property. This yields a simple explanation of an identity due to Simion-Ullman and Klazar in connection with enumeration problems on noncrossing partitions and RNA secondary structures. For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011