Neobility at SemEval-2017 Task 1: An Attention-based Sentence Similarity Model
نویسندگان
چکیده
This paper describes a neural-network model which performed competitively (top 6) at the SemEval 2017 cross-lingual Semantic Textual Similarity (STS) task. Our system employs an attention-based recurrent neural network model that optimizes the sentence similarity. In this paper, we describe our participation in the multilingual STS task which measures similarity across English, Spanish, and Arabic.
منابع مشابه
ITNLP-AiKF at SemEval-2017 Task 1: Rich Features Based SVR for Semantic Textual Similarity Computing
Semantic Textual Similarity (STS) devotes to measuring the degree of equivalence in the underlying semantic of the sentence pair. We proposed a new system, ITNLPAiKF, which applies in the SemEval 2017 Task1 Semantic Textual Similarity track 5 English monolingual pairs. In our system, rich features are involved, including Ontology based, word embedding based, Corpus based, Alignment based and Li...
متن کاملUdL at SemEval-2017 Task 1: Semantic Textual Similarity Estimation of English Sentence Pairs Using Regression Model over Pairwise Features
This paper describes the model UdL we proposed to solve the semantic textual similarity task of SemEval 2017 workshop. The track we participated in was estimating the semantics relatedness of a given set of sentence pairs in English. The best run out of three submitted runs of our model achieved a Pearson correlation score of 0.8004 compared to a hidden human annotation of 250 pairs. We used ra...
متن کاملUMDeep at SemEval-2017 Task 1: End-to-End Shared Weight LSTM Model for Semantic Textual Similarity
We describe a modified shared-LSTM network for the Semantic Textual Similarity (STS) task at SemEval-2017. The network builds on previously explored Siamese network architectures. We treat max sentence length as an additional hyperparameter to be tuned (beyond learning rate, regularization, and dropout). Our results demonstrate that hand-tuning max sentence training length significantly improve...
متن کاملECNU at SemEval-2017 Task 1: Leverage Kernel-based Traditional NLP features and Neural Networks to Build a Universal Model for Multilingual and Cross-lingual Semantic Textual Similarity
To model semantic similarity for multilingual and cross-lingual sentence pairs, we first translate foreign languages into English, and then build an efficient monolingual English system with multiple NLP features. Our system is further supported by deep learning models and our best run achieves the mean Pearson correlation 73.16% in primary track.
متن کاملDT_Team at SemEval-2017 Task 1: Semantic Similarity Using Alignments, Sentence-Level Embeddings and Gaussian Mixture Model Output
We describe our system (DT Team) submitted at SemEval-2017 Task 1, Semantic Textual Similarity (STS) challenge for English (Track 5). We developed three different models with various features including similarity scores calculated using word and chunk alignments, word/sentence embeddings, and Gaussian Mixture Model (GMM). The correlation between our system’s output and the human judgments were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017