7 Magnetic Braking and Protostellar Disk Formation : The Ideal MHD Limit
نویسنده
چکیده
Magnetic fields are usually considered dynamically important in star formation when the dimensionless mass-to-flux ratio is close to, or less than, unity (λ . 1). We show that, in disk formation, the requirement is far less stringent. This conclusion is drawn from a set of 2D (axisymmetric) simulations of the collapse of rotating, singular isothermal cores magnetized to different degrees. We find that a weak field corresponding to λ ∼ 100 can begin to disrupt the rotationally supported disk through magnetic braking, by creating regions of rapid, supersonic collapse in the disk. These regions are separated by one or more centrifugal barriers, where the rapid infall is temporarily halted. The number of centrifugal barriers increases with the mass-to-flux ratio λ. When λ & 100, they merge together to form a more or less contiguous, rotationally supported disk. Even though the magnetic field in such a case is extremely weak on the scale of dense cores, it is amplified by collapse and differential rotation, to the extent that its pressure dominates the thermal pressure in both the disk and its surrounding region. For relatively strongly magnetized cores with λ . 10, the disk formation is suppressed completely, as found previously. A new feature is that the mass accretion is highly episodic, due to reconnection of the magnetic field lines accumulated near the center. For rotationally supported disks to appear during the protostellar mass accretion phase of star formation in dense cores with realistic field strengths, the powerful magnetic brake must be weakened, perhaps through nonideal MHD effects. Another possibility is to remove, through protostellar winds, the material that acts to brake the disk rotation. We discuss the possibility of observing a generic product of the magnetic braking, an extended circumstellar region that is supported by a combination of toroidal magnetic field and rotation — a “magnetogyrosphere” — interferometrically. Subject headings: accretion disks — ISM: molecular clouds and magnetic fields — MHD — stars: formation Astronomy Department, University of Virginia, Charlottesville, VA 22904; rrm8p, [email protected]
منابع مشابه
Magnetic Braking and Protostellar Disk Formation: Ambipolar Diffusion
It is established that the formation of rotationally supported disks during the main accretion phase of star formation is suppressed by a moderately strong magnetic field in the ideal MHD limit. Non-ideal MHD effects are expected to weaken the magnetic braking, perhaps allowing the disk to reappear. We concentrate on one such effect, ambipolar diffusion, which enables the field lines to slip re...
متن کاملConstraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores
We use magnetic collapse models to place some constraints on the formation and angular momentum evolution of circumstellar disks which are embedded in magnetized cloud cores. Previous models have shown that the early evolution of a magnetized cloud core is governed by ambipolar diffusion and magnetic braking, and that the core takes the form of a nonequilibrium flattened envelope which ultimate...
متن کاملThe Circumbinary Outflow: A Protostellar Outflow Driven by a Circumbinary Disk
The protostellar outflow is star’s first cry at the moment of birth. The outflows have indispensable role in the formation of single stars, because they carry off the excess angular momentum from the centre of the shrinking gas cloud, and permits further collapse to form a star. On the other hand, a significant fraction of stars is supposed to be born as binaries with circumbinary disk that are...
متن کاملMagnetic Braking of Prolate and Oblate Cores
The collapse and fragmentation of initially prolate and oblate, magnetic molecular clouds is calculated in three dimensions with a gravitational, radiative hydrodynamics code. The code includes magnetic field effects in an approximate manner: magnetic pressure, tension, braking, and ambipolar diffusion are all modelled. The parameters varied for both the initially prolate and oblate clouds are ...
متن کاملGap Formation by Planets in Turbulent Protostellar Disks
The processes of planet formation and migration depend intimately on the interaction between planetesimals and the gaseous disks in which they form. The formation of gaps in the disk can severely limit the mass of the planet and its migration toward the protostar. We investigate the process of gap formation through magnetohydrodynamic simulations in which internal stress arises self-consistentl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008