Adaptive Sparseness for Supervised Learning
نویسنده
چکیده
The goal of supervised learning is to infer a functional mapping based on a set of training examples. To achieve good generalization, it is necessary to control the “complexity” of the learned function. In Bayesian approaches, this is done by adopting a prior for the parameters of the function being learned. We propose a Bayesian approach to supervised learning, which leads to sparse solutions; that is, in which irrelevant parameters are automatically set exactly to zero. Other ways to obtain sparse classifiers (such as Laplacian priors, support vector machines) involve (hyper)parameters which control the degree of sparseness of the resulting classifiers; these parameters have to be somehow adjusted/estimated from the training data. In contrast, our approach does not involve any (hyper)parameters to be adjusted or estimated. This is achieved by a hierarchical-Bayes interpretation of the Laplacian prior, which is then modified by the adoption of a Jeffreys’ noninformative hyperprior. Implementation is carried out by an expectationmaximization (EM) algorithm. Experiments with several benchmark data sets show that the proposed approach yields state-of-the-art performance. In particular, our method outperforms SVMs and performs competitively with the best alternative techniques, although it involves no tuning or adjustment of sparseness-controlling hyperparameters.
منابع مشابه
Adaptive Sparseness Using Jeffreys Prior
In this paper we introduce a new sparseness inducing prior which does not involve any (hyper)parameters that need to be adjusted or estimated. Although other applications are possible, we focus here on supervised learning problems: regression and classification. Experiments with several publicly available benchmark data sets show that the proposed approach yields state-of-the-art performance. I...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملSparse activity and sparse connectivity in supervised learning
Sparseness is a useful regularizer for learning in a wide range of applications, in particular in neural networks. This paper proposes a model targeted at classification tasks, where sparse activity and sparse connectivity are used to enhance classification capabilities. The tool for achieving this is a sparseness-enforcing projection operator which finds the closest vector with a pre-defined s...
متن کاملSubjectivity Recognition on Word Senses via Semi-supervised Mincuts
We supplement WordNet entries with information on the subjectivity of its word senses. Supervised classifiers that operate on word sense definitions in the same way that text classifiers operate on web or newspaper texts need large amounts of training data. The resulting data sparseness problem is aggravated by the fact that dictionary definitions are very short. We propose a semi-supervised mi...
متن کاملSyntactic Features and Word Similarity for Supervised Metonymy Resolution
We present a supervised machine learning algorithm for metonymy resolution, which exploits the similarity between examples of conventional metonymy. We show that syntactic head-modifier relations are a high precision feature for metonymy recognition but suffer from data sparseness. We partially overcome this problem by integrating a thesaurus and introducing simpler grammatical features, thereb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 25 شماره
صفحات -
تاریخ انتشار 2003