BMPRIA Mediated Signaling Is Essential for Temporomandibular Joint Development in Mice
نویسندگان
چکیده
The central importance of BMP signaling in the development and homeostasis of synovial joint of appendicular skeleton has been well documented, but its role in the development of temporomandibular joint (TMJ), also classified as a synovial joint, remains completely unknown. In this study, we investigated the function of BMPRIA mediated signaling in TMJ development in mice by transgenic loss-of- and gain-of-function approaches. We found that BMPRIA is expressed in the cranial neural crest (CNC)-derived developing condyle and glenoid fossa, major components of TMJ, as well as the interzone mesenchymal cells. Wnt1-Cre mediated tissue specific inactivation of BmprIa in CNC lineage led to defective TMJ development, including failure of articular disc separation from a hypoplastic condyle, persistence of interzone cells, and failed formation of a functional fibrocartilage layer on the articular surface of the glenoid fossa and condyle, which could be at least partially attributed to the down-regulation of Ihh in the developing condyle and inhibition of apoptosis in the interzone. On the other hand, augmented BMPRIA signaling by Wnt1-Cre driven expression of a constitutively active form of BmprIa (caBmprIa) inhibited osteogenesis of the glenoid fossa and converted the condylar primordium from secondary cartilage to primary cartilage associated with ectopic activation of Smad-dependent pathway but inhibition of JNK pathway, leading to TMJ agenesis. Our results present unambiguous evidence for an essential role of finely tuned BMPRIA mediated signaling in TMJ development.
منابع مشابه
Augmented BMPRIA-Mediated BMP Signaling in Cranial Neural Crest Lineage Leads to Cleft Palate Formation and Delayed Tooth Differentiation
The importance of BMP receptor Ia (BMPRIa) mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-medi...
متن کاملWnt Inhibitors Dkk1 and Sost Are Downstream Targets of BMP Signaling Through the Type IA Receptor (BMPRIA) in Osteoblasts
The bone morphogenetic protein (BMP) and Wnt signaling pathways both contribute essential roles in regulating bone mass. However, the molecular interactions between these pathways in osteoblasts are poorly understood. We recently reported that osteoblast-targeted conditional knockout (cKO) of BMP receptor type IA (BMPRIA) resulted in increased bone mass during embryonic development, where dimin...
متن کاملDefining BMP functions in the hair follicle by conditional ablation of BMP receptor IA
Using conditional gene targeting in mice, we show that BMP receptor IA is essential for the differentiation of progenitor cells of the inner root sheath and hair shaft. Without BMPRIA activation, GATA-3 is down-regulated and its regulated control of IRS differentiation is compromised. In contrast, Lef1 is up-regulated, but its regulated control of hair differentiation is still blocked, and BMPR...
متن کاملExpression of BMPRIA on human thymic NK cell precursors: role of BMP signaling in intrathymic NK cell development.
The bone morphogenetic protein (BMP) signaling pathway regulates survival, proliferation, and differentiation of several cell types in multiple tissues, including the thymus. Previous reports have shown that BMP signaling negatively regulates T-cell development. Here, we study the subpopulation of early human intrathymic progenitors expressing the type IA BMP receptor (BMPRIA) and provide evide...
متن کاملDirect BMP2/4 signaling through BMP receptor IA regulates fetal thymocyte progenitor homeostasis and differentiation to CD4+CD8+ double-positive cell
BMP2/4 signaling is required for embryogenesis and involved in thymus morphogenesis and T-lineage differentiation. In vitro experiments have shown that treatment of thymus explants with exogenous BMP4 negatively regulated differentiation of early thymocyte progenitors and the transition from CD4-CD8- (DN) to CD4+CD8+ (DP). Here we show that in vivo BMP2/4 signaling is required for fetal thymocy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014