Diagnosis of incipient faults in power transformers using CMAC neural network approach
نویسندگان
چکیده
Dissolved gas analysis (DGA) is one of the most useful techniques to detect the incipient faults of power transformer. However, the identification of the faulted location by the traditional method is not always an easy task due to the variability of gas data and operational natures. In this paper, a novel cerebellar model articulation controller (CMAC) neural network (NN) method is presented for the fault diagnosis of power transformers. By introducing the IEC standard 599 to generate the training data, and using the characteristic of self-learning and generalization, like the cerebellum of human being, a CMAC NN fault diagnosis scheme enables a powerful, straightforward, and efficient fault diagnosis. With application of this scheme to published transformers data, the diagnoses demonstrate the new scheme with high accuracy and high noise rejection ability. Moreover, the results also proved the ability of multiple incipient faults detection. © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Artificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers
Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...
متن کاملDetection of Single and Dual Incipient Process Faults Using an Improved Artificial Neural Network
Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faults either individually or mutually. The mai...
متن کاملDevelopment of Dissolved Gas Analysis Using ANFIS
This paper proposes the application of Adaptive Neuro-Fuzzy Inference System to improve the diagnosis accuracy of dissolved gas analysis for classification of different types of incipient faults in oil immersed power transformers. The proposed method integrated the capabilities of neural network to the robustness of fuzzy logic system for the effectiveness to be embedded in the network structur...
متن کاملAnalysis of Power Transformer using fuzzy expert and neural network system
Power transformers being the major apparatus in a power system, thus the assessment of transformer operating condition and lifespan have obtained crucial significance in latest years. Dissolved gas analysis (DGA) is a sensitive and reliable technique for the detection of incipient fault condition within oil-immersed transformers, which provides the basis of diagnostic evaluation of equipment he...
متن کاملPower transformers¬タル condition monitoring using neural modeling and the local statistical approach to fault diagnosis
On-line monitoring of electric power transformers can provide a clear indication of their status and ageing behavior. This paper proposes neural modeling and the local statistical approach to fault diagnosis for the detection of incipient faults in power transformers. The method can detect transformer failures at their early stages and consequently can deter critical conditions for the power gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004